16S rRNA interoperon sequence heterogeneity distinguishes strain populations of palm lethal yellowing phytoplasma in the Caribbean region

By N A HARRISON1*, W MYRIE2, P JONES3, M L CARPIO1, M CASTILLO4, M M DOYLE4 and C OROPEZA3

1University of Florida, Fort Lauderdale Research and Education Center, Fort Lauderdale, FL 33314, USA
2Coconut Industry Board, 18 Waterloo Road, Kingston 10, Jamaica, West Indies
3Plant Pathogen Interactions Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
4Pan American College of Agriculture, Zamorano, Honduras
5Centro de Investigación Científica de Yucatán, Merida, Yucatán, Mexico

(Accepted 26 August 2002; Received 30 April 2002)

Summary

DNA of phytoplasmas in lethal yellowing (LY)-diseased palms was detected by a nested polymerase chain reaction (PCR) assay employing rRNA primer pair P1/P7 followed by primer pair LY16Sr/ LY16-23Sr. Polymorphisms revealed by HintI endonuclease digestion of rDNA products differentiated coconut-infesting phytoplasmas in Jamaica from those detected in palms in Florida, Honduras and Mexico. A three fragment profile was generated for rDNA from phytoplasmas infecting all 21 Jamaican palms whereas a five fragment profile was evident for phytoplasmas infecting the majority of Florida (20 of 21), Honduran (13 of 14) and Mexican (5 of 5) palms. The RFLP profile indicative of Florida LY phytoplasma was resolved by cloning into two patterns, one of three bands and the other of four bands, that together constituted the five fragment profile. The two patterns were attributed to presence of two sequence heterogeneous RNA operons, rmA and rmb, in most phytoplasmas composing Florida, Honduran and Mexican LY strain populations. Unique three and four fragment RFLP profiles indicative of LY phytoplasmas infecting Howea forsteriana and coconut palm in Florida and Honduras, respectively, were also observed. By comparison, the Jamaican LY phytoplasma population uniformly contained one or possibly two identical rRNA operons. No correlation between rRNA interoperon heterogeneity and strain variation in virulence of the LY agent was evident from this study.

Key words: Phytoplasma identification, Arecalesae, coconut, 16S ribosomal RNA, mollicute, phylogeny

Introduction

Lethal yellowing (LY) is a fast spreading, highly destructive disease of coconut and at least 35 other palm species (Harrison et al., 1999). The disease has been known in parts of the western Caribbean region since the late 19th century (Eden-Green, 1997). During the last three decades, epiphytotic of LY in Jamaica and Florida have killed most of the once prevalent ‘Jamaica tall’ coconut palms at both localities. Spread of the disease into neighbouring regions has continued. Today, LY is most active along the Atlantic coasts of Belize and Honduras (Ashburner et al., 1996; Harrison & Oropesa, 1997).

Phytoplasmas are the accepted cause of LY based on their consistent detection in phloem of diseased but not healthy palms (Thomas, 1979) and based on remission of symptoms on palms in response to tetracycline therapy (McCoy et al., 1983). Today, more sensitive assays using the polymerase chain reaction (PCR) have become the methods of choice for detecting obligate phytopathogenic mollicutes in diseased palms in which they usually occur in low titres (Harrison & Oropesa, 1997; Tymon et al., 1998). Although phytoplasmas are most reliably found in immature rather than mature tissues they may be readily detected by PCR in trunk phloem at the onset of foliar symptoms in palms (Harrison et al., 1999). This finding has been exploited as a means to non-destructively sample palms to confirm phytoplasma disease initially based on symptomatology (Harrison et al., 2002a).

LY phytoplasma detection has been achieved by use of PCR assays employing primer pairs derived from rRNA sequences (Gundersen & Lee, 1996; Harrison et al., 2002a; Lee et al., 1993) or pathogen-specific non-ribosomal DNA sequences (Harrison et al., 1994). Additional restriction fragment length polymorphism (RFLP) or sequence analyses of rDNA amplification products also provide a means to compare, identify and classify phytoplasmas. At least 20 primary groups (putative species) (Seemiller et al., 1998) and numerous subgroupso
phytoplasms have been delineated by these analyses (Lee et al., 1998). One of these is the coconut lethal yellows group, designated as group 16Sr1V according to the RFLP classification scheme of Lee et al. (1993, 1998) or as subclade vii based on phylogenetic analysis (Gundersen et al., 1994). Represented solely by a Florida strain of the LY phytoplasma in earlier classifications, other subgroups include strains that cause Yucatan coconut lethal decline (LDY), Carludovica palmata yellows (CPY) and Texas Phoenix palm decline (TPD) which have since been identified and assigned to this group (Harrison et al., 2002a).

A rehabilitation programme in Jamaica based on replacement of the local highly susceptible Jamaica tall lost to LY with resistant Malayan dwarf and hybrid MayPan (Malayan dwarf × Panama tall) resulted in an island-wide recovery of the coconut industry (Been, 1995). Both cultivars have also been widely used during replanting efforts in Florida and Mexico. Subsequently, unusually high losses of Malayan dwarfs to LY occurring at several localised sites in Jamaica and Florida were first recognised during the mid-1980s (Howard et al., 1987). A re-evaluation of resistance data compiled for Malayan dwarfs and MayPans in field trials conducted in Jamaica identified significant environmental and genotype × environmental effects that influence the reaction of both cultivars to LY although factors responsible for these effects were not determined (Ashburner & Been, 1997).

Most recently, outbreaks of a disease believed to be LY have occurred around Montego Bay, Ocho Rios and Buff Bay in Jamaica where up to two-thirds of Malayan dwarfs and MayPans have been killed in these localities during the last four years. This newest development has prompted speculation about the reasons for such unexpected disease losses including the possibility that different strains of the LY agent or different vectors might be involved. The primary objective of this study was to determine the etiology of the disease currently affecting coconut palms in Jamaica. We report detection of the LY phytoplasma in all affected palms examined at this location. Based on RFLP and sequence analysis of PCR-amplified rDNA, it was also found that the LY agent in Jamaican palms varied uniformly from strains infecting palms in Florida, Honduras and Mexico.

Materials and Methods

Sources of healthy and diseased palms

A total of 21 Malayan dwarf and hybrid MayPan coconut palms displaying symptoms suggestive of LY disease were sampled at Buff Bay and Ocho Rios in Jamaica. Palms were felled and immature leaf bases adjacent to the apical meristem (heart tissues) were excised from each palm. Symptomatic palms in Yucatan, Mexico and on the grounds of the University of Florida’s Fort Lauderdale Research and Education Center (FLREC) were sampled in the same manner. The latter palms included coconut ecotypes Atlantic tall, Hawaiian tall, Chowghat green dwarf, Malayan dwarf, and hybrid MayPan as well as single representatives of 16 other palm species namely, Manila palm (Adonidia merrillii (Becc.) Becc.), dwarf sugar palm (Arenga engleri Becc.), palmyra palm (Borassus flabellifer L.), cluster fishtail palm (Caryota mitis Lour.), giant fishtail palm (Caryota rumphiana Mart.), Chelyocarpus chuco (Mart.) H. E. Moore, rootspine palm (Cryosophila warscewiczii (H. Wendl.) H. E. Bartlett), Cyphophoenix nuclea H. E. Moore, princess palm (Dictyosperma album (Bory) H. Wendl. & Drude ex Scheff.), Kentia palm (Howea forsteriana (C. Moore & F. Muell.) Becc.), spindle palm (Hyphophbe verschaffeltii H. Wendl.). Chinese fan palm (Livistona chinensis (Jacq.) R. Br. ex Mart.), footstool palm (Livistona rotundifolia (Lam.) Mart.), edible date palm (Phoenix dactylifera L.), cliff date palm (Phoenix rupicola T. Anders.) and arikury palm (Syagrus schizophylla (Mart.) Glassman). Fourteen symptomatic coconut palms identified on the Atlantic coast of Honduras were sampled by excising interior tissues from basal trunks as previously described (Harrison et al., 2002a). A seedling Malayan dwarf coconut palm grown in a shadehouse provided a source of healthy tissues for comparative use in the study.

DNA extractions

Immature leaf bases from palms were extracted by a phytoplasma enrichment method as previously described (Harrison et al., 1994). For coconut trunk tissue samples, the nucleic acid extraction procedure of Doyle & Doyle (1990) was used after first grinding 1-3 g of each sample with a mortar and pestle. Resulting nucleic-acid extracts were precipitated with ethanol, pelleted by centrifugation, dried briefly in vacuo, resuspended in TE (10 mM Tris, 0.1 mM EDTA, pH 8) buffer containing RNase and incubated for 1 h at 37°C. DNA samples were quantified by fluorometry (TKO-100 minifluorometer, Hoefer Scientific, San Francisco, CA) and stored at 4°C before use.

Phytoplasma detection by PCR

Phytoplasma infection of palms was investigated initially by PCR employing phytoplasma-universal rRNA primers P1 (Deng & Hiruki, 1991) and P7 (Smart et al., 1996). Amplifications were performed in 50 μl final reaction volumes each containing 50 ng of sample DNA template, 50 ng of each primer, 125 μM of each dNTP, 1 U of Taq DNA polymerase (Promega Corp., Madison, WI) and standard PCR.
buffer containing 1.5 mM MgCl₂ (Innis & Gelfand, 1990). P1/P7-primed PCR was performed for 30 cycles, using previously described thermal cycling parameters (Harrison et al., 2001).

Products of P1/P7-primed PCR were diluted 1:40 or 1:100 with sterile deionised water and 2 μl or 4 μl of each dilution was used as template for reamplification by PCR employing nested rRNA primers LY16Sf (Harrison et al., 2002a) and LY16-23Sr (Harrison et al., 2002b). The latter assay was designed in this study to amplify a 1740-bp rDNA product consisting of the 16S rRNA gene and 16-23S rRNA spacer region from the LY phytoplasma and closely related strains. For nested PCR, the following parameters were used: denaturation for 30 s (2 min 30 s for first cycle) at 94°C, annealing for 50 s at 60°C and extension for 80 s at 72°C. Reactions were terminated after the 30 cycles with a 10 min extension step and cooled to 4°C.

Palm DNAs were also assayed by PCR (40 cycles) employing non-ribosomal primers LYF1 and LYR1 as previously described (Harrison et al., 1994). This assay reliably detects the LY agent, a subgroup 16SrIV-A phytoplasma, but does not detect other 16SrIV subgroup strains (Harrison et al., 2002a,b). Aliquots (5 μl or 10 μl) of each final reaction mixture were electrophoresed through 1% agarose (low EEO, Fisher Scientific) gels using TAE (40 mM Tris-acetate, 1 mM EDTA) as running buffer. Products in gels were stained with ethidium bromide (EtBr), visualised by UV transmission and photographed.

RFLP analysis of PCR products

P1/P7-primed rDNA products amplified from an LY-diseased hybrid MayPan coconut palm (MPJ) in Jamaica, and from Atlantic tall ecotypes in Florida (ATF) and Honduras (ATH), were analysed in detail by separate digestion with restriction endonucleases AluI, DdeI, DraI, HaeIII, HhaI, HinII, MspI, Rsal, Sau3AI (Promega) at 37°C, BstUI (New England Biolabs, Waverly, MA) at 60°C, or TaqI and Tru9I (Promega) at 65°C, for a minimum of 16 h. Products generated from all other LY-symptomatic palms by nested PCR were digested with HinII only. Digests were electrophoresed through 8% non-denaturing polyacrylamide gels using TBE (90 mM Tris-borate, 2 mM EDTA) as running buffer. Products in gels were visualised and recorded as previously described.

Cloning and sequencing of PCR products

P1/P7 products from LY-diseased coconut palms MPJ, ATF and ATH were purified separately on spin columns (QIAPrep PCR Purification Kit, Qiagen, Valencia, CA) and eluted with sterile ultrapure water. Each purified product was then cloned in vector pGEM-T (Promega) and Escherichia coli DH5α cells (BRL Life Technologies, Rockville, MD) according to the manufacturer’s instructions. After each cloning attempt, recombinant plasmid DNA was extracted separately from 12 transformant colonies (Sambrook et al., 1989) using spin columns (Wizard Plus Minipreps, DNA Purification System, Promega). Five microlitres of each 50 μl recombinant plasmid DNA preparation was diluted 1:40 with TE buffer and 2 μl of each dilution then used as template during P1/P7-primed PCR (30 cycles), as previously described. Two microlitres of each resulting PCR product was analysed by HinII digestion and electrophoresis through 8% polyacrylamide gels. Representative rDNA clones from Jamaican and Florida LY phytoplasma strains were sequenced at the University of Florida’s Core DNA sequencing laboratory.

Analysis of phytoplasma rDNA sequences

Phytoplasma rDNA sequences derived from LY-diseased coconut palms MPJ and ATF were assembled and putative endonuclease recognition sites in each sequence were mapped using Vector NTI 5 Suite software (Informax Inc., Bethesda, MD). Maps were examined for concordance with restriction sites previously identified by actual enzymatic digestion. Pairwise comparisons of sequences were obtained by Gap analysis (Wisconsin package Version 10.1, Genetics Computer Group (GCG), Madison, WI). For phyllogenetic analysis, 16S rDNA sequences of Jamaican and Florida LY phytoplasma strains, as well as 28 other phytoplasmas representing 14 primary phytoplasma groups according to the classification scheme of Lee et al. (1998) and Achopleasma laidlawii (Table 1) were edited and aligned using SeqEd and PileUp programs (Wisconsin package Version 10.1). Pairwise evolutionary distances between aligned sequences were created by Distances (SeqWeb version 1.2, GCG) incorporating the Kimura 2-parameter distance correction method. A phylogenetic tree was reconstructed by Neighbor-Joining from the distance matrix using GrowTree (SeqWeb) and visualised by TreeView (Page, 1996).

Results

Phytoplasmas detection by PCR

Phytoplasmas were consistently detected by P1/P7-primed PCR in tissues from 20 of 21 (95.2%) declining coconut palms sampled in Jamaica, from 13 of 14 (92.9%) Honduran coconut palms and from 19 of 21 (90.5%) Florida grown palms. Positive samples were observed as weak or moderate amplification of an rDNA product of expected size (about 1.8 kb) from DNA samples. No discernible product was amplified from DNA of seedling healthy coconut palm (data not shown). Reamplification of
P1/P7 products by PCR employing nested rRNA primer pair LY165f/LY16-23Sr generated an rDNA product of expected size (about 1.7 kb) from all symptomatic Jamaican (Fig. 1A) and Honduran coconut palms as well as from all Florida palms that included four new host species, namely Kentia palm (H. forsteriana), rootspine palm (C. warseczewiczi), C. chuco and C. nuclea (data not shown). When phytoplasma positive DNA samples were examined by PCR incorporating primer pair LYF1/LYR1, a 1 kb product was amplified from all Jamaican (Fig. 1B), Honduran and Florida palms (data not shown) thereby confirming that palms contained the LY agent, a subgroup 16SrIV-A strain.

Phytoplasma characterisation

After P1/P7 products were separately digested with endonucleases Alul, BsrUI, DdeI, DraI, HaeIII, HhaI, MspI, Rsal, Sau3AI, TaqI or Tru9I and compared, no differences were evident between RFLP patterns of phytoplasmas infecting coconut palms MPJ, ATF or ATH in Jamaica, Florida and Honduras, respectively (Fig. 2). However, digests with HinII produced a predominant three fragment RFLP pattern for MPJ (Fig. 2A) which differed from co-identical five fragment patterns obtained for ATF (Fig. 2B) and ATH (Fig. 2C). Unlike the pattern obtained from MPJ, the combined size estimates of HinII fragments composing patterns from ATF or

Table 1. Description of phytoplasma 16S rDNA sequences used in this study

<table>
<thead>
<tr>
<th>Phytoplasma or associated disease</th>
<th>16S rDNA group-subgroup affiliation</th>
<th>GenBank accession no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan aster yellows (MiAY)</td>
<td>16SrI-B</td>
<td>M30790</td>
<td>Lim & Sears, 1989</td>
</tr>
<tr>
<td>Japanese hydrangea phylloidy (JHP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>('Candidatus' Phytoplasma japonicum)</td>
<td>16SrI-D</td>
<td>AB010425</td>
<td>Sawayanagi et al., 1999</td>
</tr>
<tr>
<td>Peanut witches'-broom (PnWB)</td>
<td>16SrI-A</td>
<td>L33765</td>
<td>Gundersen et al., 1994</td>
</tr>
<tr>
<td>Witches'-broom disease of lime (WBDL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>('Candidatus' Phytoplasma australasia)</td>
<td>16SrI-B</td>
<td>U15442</td>
<td>Zeik et al., 1995</td>
</tr>
<tr>
<td>Western X (WX)</td>
<td>16SrI-A</td>
<td>Y10097</td>
<td>White et al., 1998</td>
</tr>
<tr>
<td>Clover yellow edge (CYE-C)</td>
<td>16SrI-B</td>
<td>AF175304</td>
<td>Davis & Dally, 2001</td>
</tr>
<tr>
<td>Palm lethal yellowing (LY)</td>
<td>16SrV-A</td>
<td>U18747</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>Coconut lethal yellowing, Florida (LYFL-C2)</td>
<td>16SrV-A</td>
<td>AF498309</td>
<td>This article</td>
</tr>
<tr>
<td>Coconut lethal yellowing, Florida (LYFL-C5)</td>
<td>16SrV-A</td>
<td>AF498308</td>
<td>This article</td>
</tr>
<tr>
<td>Coconut lethal yellowing, Jamaica (LYJ-C8)</td>
<td>16SrV-A</td>
<td>AF498307</td>
<td>This article</td>
</tr>
<tr>
<td>Yucatan coconut lethal decline (LDY)</td>
<td>16SrV-B</td>
<td>Y18753</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>Coconut lethal disease, Tanzania (LDT)</td>
<td>16SrV-C</td>
<td>X80177</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>Carludovica palmata yellows (CPY)</td>
<td>16SrV-D</td>
<td>AF237615</td>
<td>Cordova et al., 2000</td>
</tr>
<tr>
<td>Texas Phoenix decline (TPD)</td>
<td>16SrV-D</td>
<td>AF434989</td>
<td>Harrison et al., 2002a</td>
</tr>
<tr>
<td>Awka disease, Nigeria (LDN)</td>
<td>unclassified</td>
<td>Y14175</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>Elm yellows (EY1)</td>
<td>16SrV-A</td>
<td>AF122910</td>
<td>Griffiths et al., 1999a</td>
</tr>
<tr>
<td>Clover proliferation (CP)</td>
<td>16SrV-I</td>
<td>L33761</td>
<td>Gundersen et al., 1994</td>
</tr>
<tr>
<td>Ash yellows (AshY1)</td>
<td>('Candidatus' Phytoplasma fraxini')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loofah witches'-broom (LfWB)</td>
<td>16SrVIII-A</td>
<td>L33764</td>
<td>Gundersen et al., 1994</td>
</tr>
<tr>
<td>Pigeon pea witches'-broom (PPWB)</td>
<td>16SrIX-A</td>
<td>U18763</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>Apple proliferation (AT)</td>
<td>16SrX-A</td>
<td>X68375</td>
<td>Seemüller et al., 1998</td>
</tr>
<tr>
<td>Buckthorn witches'-broom (BWB)</td>
<td>16SrX-E</td>
<td>X76431</td>
<td>Seemüller et al., 1998</td>
</tr>
<tr>
<td>Rice yellow dwarf (RYD)</td>
<td>16SrXI-A</td>
<td>D12581</td>
<td>Namba et al., 1993</td>
</tr>
<tr>
<td>Stolbur (STOL)</td>
<td>16SrXII-A</td>
<td>X76427</td>
<td>Seemüller et al., 1998</td>
</tr>
<tr>
<td>Australian grapevine yellows (AUGY)</td>
<td>('Candidatus' Phytoplasma australiense)</td>
<td>16SrXII-B</td>
<td>Padovan et al., 1996</td>
</tr>
<tr>
<td>Mexican periwinkle virescence</td>
<td>16SrXIII-A</td>
<td>AF248960</td>
<td>Davis & Dally, 2001</td>
</tr>
<tr>
<td>Bermudagrass white leaf (BGWL)</td>
<td>16SrXIV</td>
<td>Y16388</td>
<td>Seemüller et al., 1998</td>
</tr>
<tr>
<td>Hibiscus witches'-broom (HibWB)</td>
<td>('Candidatus' Phytoplasma brasiliense)</td>
<td>16SrXV</td>
<td>Montano et al., 2001</td>
</tr>
<tr>
<td>Acholeplasma laidlawii</td>
<td>Not applicable</td>
<td>M23932</td>
<td>Weisburg et al., 1989</td>
</tr>
</tbody>
</table>
ATH exceeded the size of the undigested P1/P7 product (1.8 kb) from which they were derived. Thus *Hinfl* digests were repeated and extended to 40 h but resulted in no apparent changes to RFLP patterns indicating that incomplete digestion of PCR products was an unlikely cause of the rDNA profiles observed for phytoplasmas in palms ATF and ATH. Alternatively, these profiles may be explained either by dual infection of the latter palms by two dissimilar phytoplasmas or by sequence disparities between multicyc rRNA genes present in LY phytoplasma strains. Both possibilities were substantiated by further analysis of P1/P7 products cloned from LY phytoplasmas in palms MPJ, ATF and ATH.

Hinfl digests of rDNA products reamplified by P1/P7-primed PCR from rDNA products cloned in vector pGEM-T yielded one of two different RFLP patterns (Fig. 3). A three fragment profile was evident for products LYJ-C8, LYF-C5 and LYH-C9 cloned from palms MPJ, ATF and ATH, respectively, whereas profiles for clones LYF-C2 and LYH-C6 from palms ATF and ATH consisted of four fragments of which two were common to the first profile. Of 12 rDNA clones examined from Jamaican
Fig. 2 (left). Restriction fragment length polymorphism patterns of rDNA products (1.8 kb) amplified from phytoplasma-infected coconut palms by a polymerase chain reaction (PCR) assay using rRNA primer pair P1/P7. Fragment patterns resulting from separate digestion of PCR products with 12 endonuclease were resolved by ethidium bromide staining after electrophoresis through an 8% polyacrylamide gel. rDNA products were amplified from DNA templates of the following lethal yellowing affected coconut palms abbreviated as follows: (A) MPJ = hybrid MayPan in Jamaica; (B) ATF = Atlantic tall in Florida; (C) ATH = Atlantic tall in Honduras. pGEM, molecular size (bp) markers in descending order: 2465, 1605, 1198, 676, 517, 460, 396, 350, 222, 179, 126, 75, 65.

Fig. 3. *Hind* endonuclease restriction fragment patterns of cloned phytoplasma rDNA products (1.8 kb) amplified from lethal yellowing (LY) affected coconut palms by a polymerase chain reaction (PCR) assay employing phytoplasma universal rRNA primer pair P1/P7. LYJ-C8, LYF-C5 and LYH-C9 = three fragment RFLP profile (rnA) generated by digestion of P1/P7 products cloned from LY-affected Jamaican (MPJ), Florida (ATF) and Honduran (ATH) coconut palms, respectively; LYF-C2 and LYH-C6 = four fragment RFLP profile (rnB) generated by digestion of P1/P7 products cloned from LY-affected Florida (ATF) and Honduran (ATH) coconut palms; MPJ, ATF, and ATH = RFLP patterns of P1/P7 products amplified directly from DNA of LY-affected Jamaican, Florida and Honduran coconut, respectively. pGEM, molecular size (bp) markers in descending order: 2465, 1605, 1198, 676, 517, 460, 396, 350, 222, 179, 126, 75, 65.

coconut MPJ, all yielded a three fragment profile as did *Hind* digests of P1/P7 products amplified directly from DNA of coconut palm MPJ. By comparison, P1/P7 products cloned from palms ATF
and ATH yielded either three or four fragment profiles in approximately equal numbers. Collectively, the two profile types possessed equivalent size-matching fragments composing *Hinfl* digests of products amplified directly by P1/P7-primed PCR from DNAs of coconut palms ATF or ATH (Fig. 3).

Hinfl digests of rDNA products amplified from DNA of symptomatic Jamaican coconut palms by nested PCR employing primer pair LY16SrFL/Y16-23Sr generated a three fragment RFLP profile only indicating presence of very similar or possibly the same phytoplasma strain in all of the palms analysed from this locality (Fig. 4A and B). This same analysis yielded five fragment profiles for products from phytoplasmas detected in all coconut palms in Mexico (Fig. 4B) and all but two palms sampled in Florida (Fig. 4B and C) and Honduras (Fig. 4D). Exceptions to the five fragment RFLP pattern were evident for LY phytoplasmas in a Kentia palm (HF) in Florida (Fig. 4C) for which a unique three fragment pattern was obtained and a coconut palm (CN-H5) in Honduras (Fig. 4D) which yielded all four fragment pattern.

The uniformity among RFLP patterns obtained for the majority of LY-diseased palms in Mexico, Florida and Honduras discounted the possibility that they were due to mixed infections by dissimilar phytoplasmas since chance infection of most palms by the same strain complex at all three separate locations seemed implausible. Rather, presence of two heterogeneous RNA operons (rrnA and rrnB) in the genome of LY phytoplasmas at these localities was judged the most likely explanation for patterns revealed by *Hinfl* digests and was supported by sequence comparisons.

Pairwise comparisons between P1/P7-primed rDNA sequences (1808 bp) LYFL-C5 (rrnA) and LYFL-C2 (rrnB) cloned from Florida LY phytoplasma strain in coconut ATF yielded a similarity value of 99.89%. Sequences rrnA and rrnB, each consisting of almost the entire 16S rRNA gene, the 16-23S rRNA spacer region and the 5'-end of the 23S rRNA gene (Schneider et al., 1995) varied by a total of two base substitutions in the 16S rRNA gene. In operon rrnA, these consisted of substitution of C for A at position 172 which eliminated a *Hinfl* endonuclease recognition site that was present in operon rrnB. Substitution of T for C at position 1406 in rrnA was not detected by RFLP analysis.

Comparisons between P1/P7-primed rDNA sequence LYJ-C8 (1808 bp) from LY phytoplasma strain in Jamaican coconut MPJ and rrnA or rrnB yielded similarity values of 99.89%. Sequence LYJ-C8 differed from rrnA by a single base substitution consisting of C for T located at position 1406 and from rrnB by a single base substitution consisting of C for A at position 172 thereby eliminating a *Hinfl* restriction site that was present in rrnB. Position 172 is located within variable region 2 of the corresponding sequence of Michigan aster yellows (MiAY) phytoplasma 16S rRNA gene (Lim & Sears, 1989). Putative restriction site analysis of 16S rDNA (1524 bp) identified four *Hinfl* endonuclease recognition sites in sequence rrnB located at positions 172, 1314, 1331 and 1439, respectively, and only three sites for this endonuclease at positions 1314, 1331 and 1439, respectively, in rrnA and LYJ-C8. Putative recognition sites at positions 1314 and 1331 delineated a 17 bp fragment in sequences of all three clones which was not resolved by electrophoresis of digests on 8% polyacrylamide gels.

Phylogenetic analysis

Florida LY phytoplasma rRNA operon sequences rrnA (LYF-C5) and rrnB (LYF-C2) together with Jamaican LY phytoplasma sequence rrnA (LYJ-C8) have been deposited in the GenBank nucleotide database under accession numbers AF498308, AF498309, and AF498307, respectively. A phylogenetic distance tree was constructed from a data set which included these three sequences and comparable 16S rDNA sequences of 29 additional strains representing 15 previously established phytoplasma groups (Fig. 5). Tree branching orders resolved by the analysis were similar to and largely supported the same major phylogenetic groups identified in other recent studies (Davis & Dally, 2001; Harrison et al., 2002a). Both Florida and Jamaican coconut LY phytoplasmas clustered together with those from four previously characterised strains composing the lethal yellowing phytoplasma (16SrIV) group (Harrison et al., 2002a). Tree branching patterns verified that both phytoplasmas were evolutionarily closest to palm lethal yellowing (LY) phytoplasma and part of an existing lineage of subgroup 16SrIV-A strains.

Discussion

Recent ongoing losses of Malayan dwarf and hybrid MayPan coconut palms exhibiting symptoms of LY disease in Jamaica were attributed to the LY phytoplasma based on its consistent detection in all declining palms sampled at locations on the northern coast of the island. Although the involvement of LY was suspected based on symptoms afflicting palms, the high mortality suggested some other cause since both Malayan dwarf and hybrid MayPan have exhibited satisfactory resistance to LY in Jamaica during three decades of island-wide use.

Reminiscent in intensity to the LY epiphytotic that occurred in Jamaica during the 1970s, one possible explanation for the current disease outbreak on the
northern coast is the involvement of a more virulent strain of the pathogen. In this work, populations of the LY phytoplasma were studied through analysis of 16S rRNA gene sequences. We used this approach as a means to assess potential strain variations within or between populations based on the hypothesis that minor differences in the highly conserved 16S rRNA gene are associated with biologically important differences in other parts of the genome of the organism. Such an assumption is supported by research on the ash yellows (AshY)-plant host pathosystem in which differing rDNA RFLP patterns of AshY phytoplasmas was correlated with variation in their aggressiveness as indicated by their ability to cause chlorosis and growth suppression of host plants (Sinclair et al., 2000; Sinclair & Griffiths, 2000). In the present study, RFLP analysis of PCR-amplified rDNA sequences indicated that the LY phytoplasma population in geographically isolated Jamaica was homogeneous and varied from resident
Fig. 5. Phylogenetic tree of 16S rRNA gene sequences from 30 phytoplasmas and *Acholeplasma laidlawii* constructed by the Neighbour-Joining method.

populations sampled in three disparate mainland locations in the Americas. Our comparative analysis of phytoplasma populations suggests that these differences were due to presence or absence of 16S rRNA gene heterogeneity in the LY agent. Considered a common occurrence in some bacteria (Ueda *et al.*, 1999), this trait was first recognised in clover phyllody (CPh) (*Lee et al.*, 1993) and Phormium yellow leaf (PYL) (*Liefke et al.*, 1996) phytoplasmas and may be widespread among yellows disease agents (*Davis et al.*, 1998) which are known to possess two copies of the 16S rRNA gene (Schneider & Seemüller, 1994).

The University of Florida’s Fort Lauderdale Research and Education Center (FLREC) was identified as one of several localised sites in the Florida and Jamaica where unusually high losses of resistant Malayan dwarf coconut palms to LY were first recognised (*Howard et al.*, 1987). Since this earlier report, losses at the FLREC have continued
and eliminated most palms of this ecotype and hybrid MayPans also from original plantings (Broschat et al., 2002). Coconut palm mortality was accompanied by occasional losses of other palm species which provided sources of the LY phytoplasma for comparative use in the present study. Since Jamaican LY phytoplasma differed from Florida LY strains, this disparity indicates that 16S rRNA gene heterogeneity is probably not correlated with strain variation in aggressiveness. However, presence or absence of intra-rRNA heterogeneity may provide a useful marker for further ecological or epidemiological studies on LY. For example, the unique RFLP pattern characteristic of the pathogen in Jamaica implies that the initial appearance of the disease in neighbouring Florida, Mexico or Honduras was an unlikely consequence of spread from distant Jamaica. Conversely, the observed uniformity of RFLP patterns among the majority of strains indicates a common origin for LY phytoplasma populations on the Atlantic coast of the Americas. Furthermore, in a related study, genetic differences among LY phytoplasmas infecting coconut palms in Cuba and Yucatán, Mexico were detected following an analysis of DNA amplified by LY-specific non-ribosomal primer pair LYF1/R1, (Llauger et al., 2002). Extending the latter study to include comparisons of LY phytoplasma populations in Jamaica and other regions should augment our understanding of strain variability among LY phytoplasma populations.

It is also plausible that the current losses of Malayan dwarf and MayPan coconuts in Jamaica reflects changes in interactions between resident vector populations and coconut palms about which little is known. While there is convincing evidence to implicate the cixiid Myndus crassus Van Duze as a primary vector of LY in Florida (Howard et al., 1983, 1984), similar past research failed to confirm a role for this planthopper species, or any other palm-associated species, as a vector in Jamaica (Eden-Green, 1997). Fluctuations in vector abundance, or perhaps the involvement of other vector species besides M. crassus might explain the increased incidence in LY disease among coconut palms at this locality and warrants further study.

Acknowledgements

Florida Agricultural Experimentation Station Journal Series No. R-08748. Work performed at Rothamsted Research, UK was done under MAFF Licence PHL 174/3899.

References

Lim P-O, Sears B B. 1989. 16S rRNA sequence indicates that plant-pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. *Journal of Bacteriology* 171:5901-5906.

