SHORT COMMUNICATION

Development of a quantitative real-time PCR assay for the detection of *Phytophthora austrocedrae*, an emerging pathogen in Britain

By V. Mulholland¹, A. Schlenzig¹, G. A. MacAskill² and S. Green^{2,3}

¹Science and Advice for Scottish Agriculture (SASA), Edinburgh, EH12 9FJ, UK; ²Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, UK; ³E-mail: sarah.green@forestry.gsi.gov.uk (for correspondence)

Summary

A TaqMan real-time PCR assay was developed for *Phytophthora austrocedrae*, an emerging pathogen causing severe damage to juniper in Britain. The primers amplified DNA of the target pathogen down to 1 pg of extracted DNA, in both the presence and absence of host DNA, but did not amplify any of the non-target *Phytophthora* and fungal species tested. The assay provides a useful tool for screening juniper populations for the disease.

1 Introduction

Phytophthora austrocedrae was first described in 2007 associated with mortality of Chilean cedar (*Austrocedrus chilensis*) in Argentina (Greslebin et al. 2007; Greslebin and Hansen 2010). The pathogen was not reported elsewhere until early 2011 when it was found killing Nootka cypress (*Chamaecyparis nootkatensis*) and Lawson cypress (*C. lawsoniana*) in Scotland (S. Green and G. A. MacAskill, unpublished). More recently, the pathogen has been found causing extensive dieback and mortality of juniper (*Juniperus communis*) in northern Britain (Green et al. 2012), with twelve juniper sites now confirmed as infected. In addition to these field outbreaks, DNA of *P. austrocedrae* has been identified in diseased juniper located in nurseries or private gardens in Britain (A. Schlenzig, unpublished; Denton et al. 2010).

As *P. austrocedrae* is very slow growing and difficult to isolate, diagnosis has relied on DNA extraction from diseased bark followed by sequencing of the ITS region. However, this process does not always yield a result, suggesting that conventional PCR might not be sufficiently sensitive to detect very small quantities of pathogen DNA. Given current interest in screening juniper in Britain for *P. austrocedrae*, a fast, accurate and specific diagnostic tool is needed. The aim of this study was to develop a highly sensitive TaqMan real-time PCR assay for the specific detection of *P. austrocedrae* in host tissue.

2 Materials and methods

Isolates of *P. austrocedrae* were collected from juniper at two locations in northern Britain (Table 1). Inner bark (phloem) samples from lesion margins were plated on to SMA + MRP *Phytophthora* selective medium (Brasier et al. 2005) and incubated at room temperature (15–24°C) in the dark. For sequencing, isolates were grown for 14 days in 1 ml V8 broth in an Eppendorf tube, centrifuged for 5 min at 14 000 *g*, the supernatant was poured off, and DNA was extracted from mycelia using the DNeasy Plant Mini kit (Qiagen, Hilden, Germany). Standard PCR was performed using the *Phytophthora*-specific forward primer Ph2 (Ippolito et al. 2002) and universal reverse primer ITS4 (White et al. 1990) and the purified PCR product sequenced in both directions with the BIGDYE version 3.1 Ready Reaction Kit on an ABI PRISM 3730 capillary sequencer (Applied Biosystems, Foster City, CA, USA). Raw sequences were aligned and edited using SEQUENCHER version 4.8 for Windows and aligned with published ITS sequences in GenBank using BLAST (Altschul et al. 1990). TaqMan primers and probe were designed using PRIMER EXPRESS version 2 (Applied Biosystems).

Real-time PCR amplification of *P. austrocedrae* DNA was performed in TaqMan Environmental Master mix 2.0 (Applied Biosystems) in 20 µl reaction volumes with primer and probe concentrations of 250 nM and a total of 2 µl template. The PCRs also included a VIC-labelled internal positive TaqMan control (Applied Biosystems), used according to the manufacturer's recommended concentrations, to detect inhibition of reactions by template DNA. The PCR was carried out in an ABI PRISM 7900HT Real-Time PCR System (Applied Biosystems) using cycle parameters of 95°C for 10 min followed by 40 cycles of 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 1 min.

Primer specificity was tested on DNA extracted from *P. austrocedrae* isolates TDJ3, TDJ6, GA3 and GAT6 (Table 1) as well as 22 other non-target species (Table 1). DNA extracted from healthy juniper and Lawson cypress was included in each series of reactions as a negative control. Primer sensitivity was tested on a serial dilution of 10 000, 1000, 100, 10 and 1 pg DNA extracted from *P. austrocedrae* isolate TDJ3. An additional dilution series was spiked with 5 ng of DNA extracted from healthy juniper. Each reaction was replicated three times within a single PCR run. For all tests, the PCR amplification efficiency (*E*) was calculated based on the slope of the standard curve using the equation $E = (10^{[-1/slope]} - 1) \times 100$.

The quantitative assay was also tested on DNA extracted from 65–99 mg of infected bark collected from diseased juniper, Nootka cypress and Lawson cypress trees (Table 1). Each sample was tested twice in separate PCRs with 2 μ l DNA diluted 1/15 and a standard curve generated for *P. austrocedrae* isolate TJD3 containing 10 000, 1000, 100, 10 and 1 pg DNA.

Table 1.	Isolates	used in	ı this	study	with	details	of t	their	host	species,	geographica	al location	, year	of	collection	and	organization	supplyin	ıg
										the is	olate.								

Isolatos		Host	Origin and year	Source ¹	Real-time PCR specificity
isolates		Höst		Source	(+/-)
TDJ3	Phytophthora austrocedrae	Juniperus communis	Upper Teesdale, England 2011	FR, NRS	+
TDJ6	P. austrocedrae	J. communis	Upper Teesdale, England 2012	FR, NRS	+
GA3	P. austrocedrae	J. communis	Glen Artney, Scotland 2012	FR, NRS	+
GAT6	P. austrocedrae	J. communis	Glen Artney, Scotland 2012	FR, NRS	+
GA2	Amylostereum laevigatum	J. communis	Glen Artney, Scotland 2012	FR, NRS	-
2035	Phomopsis juniperovora	J. communis	Tain, Scotland 2002	FR, NRS	_
51.1	Heterobasidion annosum	Picea sitchensis	Monaughty, Scotland,	FR, NRS	_
			year unknown		
2050	Chondrostereum purpureum	Alnus sp.	England, 1988	FR, Alice Holt	-
0582/8	Phytophthora cactorum	Rhododendron ponticum	Spain, year unknown Carradale,	SASA	_
1501	Phytophthora cambiyora	Fagus subatica	Scotland 2009	SASA	
1391	Phytophthora cinnamomi	Inknown	Unknown	IHI	_
887	Phytophthora citronhthora	Pieris sn	Scotland 2004	SASA	_
007	Phytophthora cryptogeg	Unknown	Unknown	IHI	_
	Phytophthora drechsleri	Unknown	Unknown	ÍHI	_
	Phytophthora eythroseptica	Unknown	Unknown	IHI	_
	Phytophthora gonapodyides	Unknown	Unknown	ÍHI	_
	Phytophthora heveae	Unknown	Unknown	ÍHI	_
1904/22	Phytophthora hibernalis	Kalmia sp.	Ardanaiseig, Scotland 2008	SASA	-
IDA1	Phytophthora idaei	Rubus idaeus	Scotland, year unknown	JHI	-
	Phytophthora infestans	Unknown	Scotland, year unknown	JHI	_
1642/52	Phytophthora kernoviae	R. ponticum	Brodick, Scotland 2008	SASA	_
FCT1	Phytophthora lateralis	Chamaecyparis lawsoniana	Balloch, Scotland 2010	SASA	_
1945	Phytophthora nicotianae	Unknown	Unknown	JHI	_
BBA 2/94-IIB	Phytophthora obscura	Isolated from soil beneath diseased <i>Aesculus</i>	Germany 1994	јкі	_
	Phytophthora parasitica	Lycopersicon esculentum	Lanark, Scotland 2009	SASA	_
511	Phytophthora plurivora	Rhododendron 'Cosmonolitan'	Scotland 2007	SASA	_
1644	Phytophthora pseudosyringae	Magnolia salicifolia	Glenarn, Scotland 2008	SASA	_
2093/2	Phytophthora ramorum	Rhododendron sp.	Stranraer, Scotland 2009	SASA	-
SCRP333	Phytophthora rubi	R. idaeus	Scotland, year	JHI	-
01037/B8	Phytophthora svrinaae	R. ponticum	Bathgate, Scotland 2010	SASA	_
	Pythium sylvaticum	Pseudotsuga menziesii	Kelso, Scotland 2003	SASA	-

¹FR, NRS, Forest Research, Northern Research Station, Midlothian, Scotland; FR, Alice Holt, Forest Research, Alice Holt Lodge, Hampshire, England; UPV, Universidad Politecnica de Valencia, Spain; SASA, Science and Advice for Scottish Agriculture, Edinburgh, Scotland; JHI, James Hutton Institute, Dundee, Scotland; JKI, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany.

3 Results and discussion

All four *P. austrocedrae* isolates from juniper yielded a 685-bp ITS amplification product that showed 100% sequence similarity within this region and shared 99% sequence similarity with the ITS sequences of isolates of *P. austrocedrae* from Argentina. TaqMan real-time PCR primers and probe specific to *P. austrocedrae* were designed to a region of the internal ITS sequences: Paus-481-F TGGTGAACCGTAGCTGTATTTAAGC, Paus-554-R GGAACAACCGCCACTCTACTTC and Paus-507-TM TGGCATTTGAACCGRCGATGTG. The TaqMan probe was FAM labelled, with a BHQ1 Black Hole quencher (Eurofins MWG).

Fig. 1. ClustalW multiple sequence alignment of the ITS region of *P. austrocedrae* from Britain and Argentina and its relatives selected from the NCBI GenBank sequence database. Shaded bases denote a difference in the sequence of *P. austrocedrae* isolate TDJ3. The TaqMan real-time PCR primers and probe-binding sites used to detect and quantify infection of juniper by *P. austrocedrae* are boxed, and arrows above indicate the orientation of the primers.

Although all British *P. austrocedrae* isolates conform to a single genotype, the assay was designed with an 'R' in the probe sequence to detect both British and Argentinian genotypes of *P. austrocedrae*, which differ by a single A/G base substitution in this region (Fig. 1).

The TaqMan primers/probe amplified all isolates of *P. austrocedrae* and did not amplify DNA from any non-target species (Table 1). For the standard curves based on pure DNA extracted from *P. austrocedrae* isolate TDJ3, there was a linear relationship between cycle threshold ($C_{\rm T}$) and the log-transformed amount of DNA (10 000–1 pg) both with and without

Fig. 2. Standard curves for quantifying *Phytophthora austrocedrae* DNA. (a) Graph of log-transformed DNA amounts, against cycle threshold (C_T) values, averaged over three PCR runs, with each data point in triplicate in each run. (b) Log-transformed amounts of target DNA spiked with 5 ng juniper DNA, against cycle threshold (C_T) values for three replicate reactions conducted in a single PCR run.

					2	-	-		
				ĥ	<i>ytophthora</i> quantifica	<i>austrocedr</i> tion (pg)	ae		Inhibitor-resistant
Sample code	Site	Source	Conventional PCR and sequencing	Run 1	Run 2	Run 3	Mean	standard master mix IPC ¹ C _T	IPC ¹ C _T
GA1	Glen Artney 2012	Juniper bark	P. austrocedrae	36	34	41	37	28.62	32.20
GA2	Glen Artney 2012	Juniper bark	Not detected	0	0	0	0	28.70	31.83
GA3	Glen Artney 2012	Juniper bark	P. austrocedrae	502	306	233	347	29.13	31.75
GA4	Glen Artney 2012	Juniper bark	P. austrocedrae	518	486	481	495	29.24	31.74
GAT2	Glen Artney 2012	Juniper bark	P. austrocedrae	533	565	512	537	29.56	31.86
GAT3	Glen Artney 2012	Juniper bark	P. austrocedrae	2	2	ŝ	2	29.41	31.87
GAT4	Glen Artney 2012	Juniper bark	P. austrocedrae	ŝ	1	2	2	Undetermined	31.70
GAT5	Glen Artney 2012	Juniper bark	P. austrocedrae	3838	1386	1278	2168	28.64	32.00
GAT7	Glen Artney 2012	Juniper bark	P. austrocedrae	2230	1190	1048	1489	29.27	31.97
GAT8	Glen Artney 2012	Juniper bark	P. austrocedrae	1206	1216	1079	1167	29.33	31.52
GAT9	Glen Artney 2012	Juniper bark	P. austrocedrae	0.25	0	0.19	0.15	29.19	31.89
RG04	Glasgow 2011	Nootka cypress bark	P. austrocedrae	2265	1859	1856	1993	28.75	32.01
10/1113/100	Glasgow 2011	Lawson cypress bark	P. austrocedrae	11 242	11 355	10 410	11 002	29.75	31.86
Lesion 8a	Teesdale 2011	Juniper bark	P. austrocedrae	636	296	350	427	29.45	31.74
Lesion 8b	Teesdale 2011	Juniper bark	P. austrocedrae	249	41	41	110	29.16	31.83
TDJ8	Teesdale 2012	Juniper bark	P. austrocedrae	12	11	13	12	29.06	31.43
TDJ9	Teesdale 2012	Juniper bark	P. austrocedrae	11	11	10	10	29.21	31.73
TD]12	Teesdale 2012	Juniper bark	P. austrocedrae	2	1	ŝ	2	29.32	31.77
TD]13	Teesdale 2012	Juniper bark	P. austrocedrae	9	9	7	9	29.07	31.60
HF2	Teesdale 2012	Juniper bark	P. austrocedrae	366	252	303	307	29.13	31.73
Quantitative da is also shown	ta were generated fro comnaring standard m	m three separate runs al laster mix with inhibitor.	nd are shown as the total amount of t resistant master mix	target DNA	in the extr	acts tested	. An assay	for inhibitory compound	ls in the extractions
¹ Internal positi	ve control.								

Table 2. Quantitative real-time PCR detection of Phytophthora austrocedrae in naturally infected juniper and cypress located in Britain.

the presence of 5 ng juniper DNA (Fig. 2a,b). In diseased juniper bark, *P. austrocedrae* was detected down to 1 pg DNA (Table 2). Thus, the sensitivity of the real-time PCR assay is well within the range for practical use in field-collected samples.

During preliminary testing, anomalous real-time PCR results were obtained for some bark samples when undiluted extracts were used (data not shown). For these samples, the real-time PCR worked when DNA extracts were diluted 1 in 15. To screen for inhibitors, two real-time PCR assays containing an internal positive control with either standard real-time PCR master mix (Eurogentec, Southampton, UK) or inhibitor-resistant PCR master mix (EMM 2.0; Applied Biosystems) were performed for each bark DNA extract. The results (two furthest right-hand columns in Table 2) indicate inhibition of standard master mix for sample GAT4. It is therefore recommended that diseased bark DNA samples are diluted, and an inhibitor-resistant master mix is used when performing the assay.

Acknowledgements

The authors wish to thank Dr Bridget Laue, Heather Steele and Rowan Gray for technical assistance, Dr Joan Cottrell for critical evaluation of the manuscript and Dr David Cooke for supplying isolates. This work was funded by the Forestry Commission and Scottish Government and performed under Scottish Government Plant Health Order 2005 Licence PH/4/2011.

References

Altschul, S. F.; Gish, W.; Miller, W.; Myer, E. W.; Lipman, D. J., 1990: Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

- Brasier, C. M.; Beales, P. A.; Kirk, S. A.; Denman, S.; Rose, J., 2005: *Phytophthora kernoviae* sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in Britain. Mycol. Res. **109**, 1–7.
- Denton, G.; Denton, J.; Waghorn, I.; Henricot, B., 2010: Diversity of *Phytophthora* species in UK gardens. Poster presented at the Fifth Meeting of the IUFRO Working Party S07-02-09, Phytophthora Diseases in Forests and Natural Ecosystems held 7-12 March 2010, Auckland and Rotorua, New Zealand.
- Green, S.; Hendry, S. J.; MacAskill, G. A.; Laue, B. E.; Steele, H., 2012: Dieback and mortality of *Juniperus communis* in Britain associated with *Phytophthora austrocedrae*. New Dis. Rep. **26**, 2. http://dx.doi.org/10.5197/j.2044-0588.2012.026.002.
- Greslebin, A. G.; Hansen, E. M., 2010: Pathogenicity of *Phytophthora austrocedrae* on *Austrocedrus chilensis* and its relation with *mal del ciprés* in Patagonia. Plant. Pathol. **59**, 604–612.
- Greslebin, A. G.; Hansen, E. M.; Sutton, W., 2007: Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycol. Res. 111, 308–316.
- Ippolito, A.; Schena, L.; Nigro, F., 2002: Detection of *Phytophthora nicotianae* and *P. citrophthora* in citrus roots and soils by nested PCR. Eur. J. Plant Pathol. **108**, 855–868.
- White, T. J.; Bruns, T.; Lee, S.; Taylor, J., 1990: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols A Guide to Methods and Applications. Ed. by Innis, N.; Gelfand, D.; Sninsky, J.; White, T. San Diego: Academic Press, pp. 315–322.