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6 
Distribution of Viruses and Their 
Nematode Vectors 

Giovanni P. Martelli and Charles E. Taylor 

Introduction 

There are several landmarks on the pathway of our expanding knowledge 
of nematode transmissiom of plant viruses. The initial discovery of 
Xiphinema index as vector of grapevine fanleaf virus (GFL V) (51) stimu­
lated the search for nematode vectors of other soil-borne viruses, and this 
was accompanied by research on many aspects of the biology, ecology, 
and taxonomy of both nematodes and viruses. Early investigations 
established that plant viruses specifically associate with their nematode 
vectors, and the mechanism of this association began to emerge when it 
was discovered that the virus coat protein was a key factor in the 
adsorption of particles at virus retention sites within the nematodes. The 
importance of wild hosts for both viruses and vectors, the perennation of 
viruses in weed seeds, and the insight into the feeding behavior of vector 
nematodes improved our understanding of how viruses survive and 
spread in nature, and a basis for their control in commercial crops. 

In recent years, improved technology has provided detailed informa­
tion on the characteristics of viruses of the Nepovirus and Tobravirus 
groups. Members of both groups have a bipartite genome made up of two 
functional and separately encapsidated RNA species, which may recom­
bine under both experimental and natural conditions to give rise to 
pseudo-recombinant strains (48, 108). 

Now that the physicochemical composition of nepoviruses and their 
hydrodynamic and serological properties are known, subgroups that are 
broadly consistent with the geographical distribution and presumed origin 
of the different viruses have been established. Interest in the taxonomy of 
the virus vectors longidorids and trichodorids continues, as the number of 

Giovanni P. Martelli, Dipartimento di Patologia vegetale, University of Bari and Centro di 
Studio del CNR sui Virus e le Virosi delle Colture Mediterranee, 70126 Bari, Italy. 
Charles E. Taylor, Honorary Research Associate, Scottish Crops Research Institute, 
Invergowrie, Dundee, DD2 5DA Scotland. 
© 1989 by Springer-Verlag New York, Inc. Advances in Disease Vector Research, Volume 6. 
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152 Giovanni P. Martelli and Charles E. Taylor 

species known increases and the role of nematodes as vectors is better 
understood (63, 139). 

There have been numerous reviews on many aspects of nematode 
transmission of viruses (47, 63, 68, 69, 83, 86, 122, 124, 125, 127, 128, 132, 
133). In this most recent review, here, we consider the geographical 
distribution of the nepoviruses and Lobraviruses as an approach to 
understanding the ecological and biological association between these 
viruses and their vectors. 

Nematode-Transmitted Viruses a3 Plant Pathogens 

Diseases Induced by N epoviruses 

Nepoviruses are reported to infect wild plants, annual crops, and 
perennial crops. The natural host range varies greatly with individu~ 
viruses, as does the severity of the diseases they induce. Some nepov1-
ruses are pathogens of primary economic importance, since they affect 
and damage major crops. Other nepoviruses are restricted to a single or a 
few hosts; thus, they are, for the most part, only of scientific interest. 
Grasses and cultivated cereals do not appear to be hosts to nepoviruses, 
and the only gymnosperm host so far reported is Cycas revoluta in Japan 
(39, 61). 

The diseases caused by nepoviruses have been reviewed repeatedly, 
and most recently by Murant et al. (89) and Stace-Smith and :Ramsdell 
(122). Thus, they will only be summarized here, with a few selected 
examples in the following plant categories. 

VEGETABLES 

The artichoke (Cynara scolymus) seems to be one of the vegatables most 
frequently attacked by nepovirus. Three different viruses, viz., artichoke 
Italian latent (AILV), artichoke yellow ringspot (AYRV), and artichoke 
vein banding (AVBV) viruses, are named after this host (36, 73, 95). Two 
additional members of the group, strains of raspberry ringspot (RRV) and 
of tomato black ring (TBRV) viruses, have been recovered from artichoke 
plants in the eastern Mediterranean area (96) and in France (80), 
respectively. 

Depending upon the cultivar and, perhaps, growing conditions, nep­
ovirus-infected artichokes may either be symptomless '(AIL V, RRV) or 
exhibit symptoms ranging from mild chlorotic discolorations (A VBV, 
RR V, TBRV) to generalized yellowing and stunting (AIL V), scattered 
yellow blotches (RRV), and intense chrome yellow rings and line patterns 
accompanied by necrosis and stunting (AYRV). The yield is variously 
affected, but no estimates of crop loss have been made (94). 
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Potato (Solanum tuberosum) has its own nepoviruses in Peru, such as 
potato black ringspot (PBRV), potato virus U (PVU), and arracacha 
virus B (AVB) (55, 56, 112), of which only PBRV induces a field 
syndrome characterized by necrotic spotting or generalized yellowing of 
the leaves (112). In Europe, potato is affected by TBRV, the cause of 
"bouquet" and "pseudo-aucuba" diseases, the symptoms of which are 
necrotic spots, rings and malformations of the leaves, and stunting. Crop 
losses of up to 30% have been estimated in secondarily infected plants (5). 

Cucurbits (melon, watermelon, squash, cucumber) are seriously af­
fected by tobacco ringspot virus (TobRSV) in the· United States. Infected 
plants have~ mottled and malformed l~aves, r_ings~otting, stunt~ng and 
poor fruit set (122}. In Europe, arabis mosaic virus (ArMV) mduces 
mottling, ringspotting and stunting of field-grown cucumbers (84). 

Five different nepoviruses, ArMV, chicory yellow mottle (CYMV), 
grapevine chrome mosaic (GCMV), strawberry latent ringspot (SLRV), 
and TBRV have been associated in Europe with diseases of celery (Apium 
graveolens), in which they cause bright yellow mottling (GCMV, ~YMV) 
or chlorotic mottling, distortion and crinkling of the leaves, stuntmg, and 
necrosis (ArMV, SLRV, TBRV) (72, 84, 85, 93) . 

Interestingly, of the three nepoviruses named after tomato, that is, 
TBRV, tomato ringspot (TomRSV), and tomato top necrosis (TTNV) 
viruses, none seems to be of economic importance to this crop . 

SMALL FRUITS 

The consensus is that grapevine (Vitis vinifera), raspberry (Rubus 
idaeus), and strawberry (Fragaria x ananassa) are affected by nepovi­
ruses more than any other small fruit species. 

No less than twelve different nepoviruses have been found associated 
with two major grapevine disorders known as "grapevine degeneration" 
and "grapevine decline." These viruses are ArMV, AIL V, blueberry leaf 
mottle (BBLMV), grapevine Bulgarian latent (GBLV), GCMV, GFLV, 
peach rosette mosaic (PRMV), RRV, SLRV, TobRSV, TBRV, and 
TomRSV. 

Grapevine degeneration is typically caused by GFL V in the Mediterra­
nean basin and all other viticultural areas, except for Central Europe and 
the Balkans where several other nepoviruses (ArMV, GCMV, RRV, 
SLRV, and TBRV), either alone or in association with GFLV, are able to 
induce a comparable disease. Grapevine degeneration consists of three 
distinct syndromes, characterized either by deformations of the leaves, 
shoots, and canes; chlorotic mottling; reduced vigor and poor fruit setti~g 
(fanleaf); or by bright yellow discolorations of the foliage (yellow mosaic) 
or chrome yellow flecks along the main veins, which sometimes spread 
into the interveinal tissues (vein banding) (10). The crop may be dras­
tically affected, with average losses up to or above 60% (110). 

dmackesy
Highlight
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Grapevine decline typically occurs in V. vinifera and Vitis labrusca 
grown in the northern United States and Canada. It shows leaf and cane 
symptoms comparable to those of fanleaf, but affected vines die more 
frequently, especially when they are European cultivars. Tomato ringspot 
virus is the main cause of grapevine decline. together with three addi­
tional American nepoviruses [BBLMV, PRMV, and TobRSV (71)]. 

Raspberry has been reported to be a host to seven different nepovi­
ruses: ArMV, cherry leafroll (CLRV), cherry rasp-leaf (CRLV), RRV, 
SLRV, TBRV, and TomRSV, all of which are pathogenic, except for 
CRLV whose infections are latent (122). . 

The field syndromes induced in raspberry by ~nepoviruses vary with the 
agent, or association of agents, and the cul ti var. There are cul ti vars that 
are resistant or immune to individual viruses (ArMV, RRV, SLRV, 
TBRV) or some of their isolates (ArMV). Susceptible cultivars react to 
viral infections with a variety of foliage changes ( chlorotic mottling, vein 
yellowing, yellow speckling, yellow or chlorotic ringspotting, curling), 
reduced vigor, stunting, and reduction and deformation of fruit (89). 

Although, compared with raspberry, fewer nepoviruses (ArMV, RRV, 
SLRV, TBRV, and TomRSV) have been found to infect strawberry 
plants, their effects on this crop are equally destructive. Except for 
TomRSV, which rarely causes a natural infection in strawberry (26), all 
other viruses are major pathogens, especially in Great Britain and Central 
Europe, where mixed infections (e.g., ArMV and SLRV; RRV and 
TBRV) are common. 

Symptoms consist of chlorotic spots, rings, and/or yellow blotches of 
the leaves, which may also be twisted, cupped, or crinkled. With mixed 
infections, the symptoms are usually more severe; the plants are stunted 
and often die (89). 

FRUIT TREES 

Nepovirus-induced diseases of pome fruit trees are rare, apple (Malus 
sylvestris) being the only species known to be affected. Two disorders 
of apple have been described, both in North America: "flat apple" 
and "union necrosis and decline," which are induced by CLRV and 
TomRSV, respectively (123). 

Flat apple derives its name from the flattened appearance of the fruit 
borne by diseased plants. The affected plants become progressively 
weaker, stunted, and densely bushy. 

In apple decline, the infected trees develop a necrosis of the woody 
cylinder at the graft union, possibly due to the hypersensitive reaction of 
the scion to the virus, which leads to a progressive decline. 

Several nepoviruses cause diseases of economic importance in stone 
fruits. 
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Cherry (Prunus avium) is reported to be susceptible to six different 
nepoviruses two of which (CLRV and CRLV) are named after it. A 
typical, nepovirus-induced disease of cherry is rasp-leaf, which is charac­
terized by enations on the underside of the leaves. Rasp-leaf syndromes 
are reported from western North America and Europe, but the causal 
agents differ. Rasp-leaf is caused by a single virus (CRLV) in North 
America (121), whereas in Europe it originates from mixed infections of 
nepoviruses (ArMV or RRV) and viruses of the prunus necrotic ringspot 
type (29). 

Stem pitting and decline is another serious disease of cherry caused by 
TomRSV. Affected trees have reduced vigor and yield, with extensive 
pitting of the vascular cylinder. A similar disease, induced by the same 
agent (TomRSV), affects peach (Prunus persica) in North America. With 
this disease, known as yellow bud mosaic, stem pitting is accompanied by 
different patterns of yellow discoloration and severe distortion of the 
leaves (119). 

Other economically important diseases of peach caused by nepoviruses 
are peach rosette mosaic, caused by PRMV in North America (58), and 
peach willow leaf rosette, caused by SLRV in Europe (28). In both 
disorders, there are various degrees of mottling and distortion of the 
leaves and a progressive decline of the tree. 

A high incidence of CLRV infections has been found in English walnut 
(Juglans regia) in Europe and North America. The effect of the virus 
differs dramatically, depending on whether the host is on its own roots or 
is grafted to rootstocks of species other than J. regia, or their hybrids 
(e.g., Paradox = J. regia x Juglans hindisii). Self-rooted English walnuts 
are tolerant of infection; most plants are symptomless or, at most, show 
chlorotic ringspots and line patterns, or an occasional bright yellow 
blotching (117). Grafted walnuts, however, go into a severe decline, a 
condition known as "black line," which, in several areas, constitutes a 
limiting factor to walnut production. This disease depends upon CLRV 
hypersensitivity of walnut rootstocks, the tissues of which, when invaded 
by the virus, necrotize to give rise to a black line of dead cells at the graft 
union (89). 

Finally, the olive (Olea europaea) should be briefly mentioned as a 
natural host of nepoviruses. A long debate, started in 1938 on whether 
olive was affected by virus diseases, ended some 10 years ago with the 
detection of virus particles in developing pollen grains (91). So far, seven 
different viruses have been recovered, mostly from symptomless olive 
trees, by sap inoculation (70). Of these viruses, four are nepoviruses, viz., 
olive latent ringspot virus (OLRV), ArMV, CLRV, and SLRV. None of 
them, however, causes a specific disease, except for SLRV, which has 
been found to be associated with striking malformations of leaves and 
fruits of cv. Ascolana tenera (67). 
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Diseases Induced by Tobraviruses 

Among the tobraviruses, tobacco rattle virus (TRV) has the widest 
natural host range. This range includes herbaceous weeds and wild, 
woody perennials, as well as annual and perennial crops (44-46). 

In naturally infected plants, TRV tends to remain localized in the 
roots-the initial site of infection. In certain hosts, however, the virus 
moves to the above-ground parts, as in the case of pepper (Capsicum 
annuum), in which TRV induces bright yellow ring and line patterns in the 
leaves and yellow blotching, puckering, and malformation of the fruit 
~). ~ 

Limited TRV systemic infection also occurs in potato plants originating 
from tubers affected by spraing disease-a severe disorder characterized 
by areas of corky tissues in the tuber flesh and mottled foliage (21). 

Pea early-browning virus (PEBV) has a natural host range restricted to 
Leguminosae. Pea (Pisum sativum), French bean (Phaseolus vulgaris), 
broad bean (Viciafaba), and alfalfa (Medicago sativa) are the only plants 
from which the virus has been recovered. The infection is usually 
systemic and the symptoms shown by the foliage range from mild mottling 
and deformation to yellow chevrons and bands to extended necrosis (46). 

Pepper ringspot virus (PRV) has been reported only from Brazil, where 
it systemically invades crops like tomato, pepper, and artichoke, to 
produce various patterns of bright yellow rings, lines, and bands on the 
foliage ( 46). 

Causal Agents 

Nepoviruses 

The nepovirus group is one of the most rapidly expanding taxonomic 
groups of plant viruses. Its initial membership of eight, inclusive of 
definitive and possible members (47), had already grown to twenty-six in 
1982 (79), and currently numbers thirty-four (Table 6.1). Of these, only 
eleven have a recognized nematode vector (see also Table 6A). The rest 
owe their present taxonomic assignment to the possession of specific 
biological characteristics (i.e., host range responses, transmission 
through seeds) and physicochemical and other properties such as the type 
of intracellular behavior that conform those typical of the group. 

Although all nepoviruses have isometric particles -30 nm in diameter 
and a bipartite genome with two functional RNA species (42), wide 
differences exist in the physicochemical and hydrodynamic properties of 
individual members. Their serological properties, geographical distribu­
tion, vectors, and means of natural spread also differ. Such differences 
may be used to subdivide the group into smaller coherent clusters. 
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GROUPING ON A MOLECULAR BASIS 

Nepoviruses differ with respect to their physicochemical properties and 
hydrodynamic behavior. Normally, these viruses contain three types of 
particles, corresponding to centrifugal component T, empty protein 
shells: M, nucleoproteins containing one molecule of the smaller genomic 
RNA (RNA-2); and B, nucleoproteins containing one molecule of the 
larger RNA (RNA-1). However, a few members (six in all), contain a 
different type of particle that encapsidates two molecules of RNA-2. This 
determines whether the B component yields one (homogeneity) or two 
(heterogenfity) buoyant density classes when centrifuged at equilibrium. 

Nepovinises with a homogeneous B component also exhibit clear-cut 
differences in the molecular weight of RNA-2, which influences the 
sedimentation behavior and, hence, the sedimentation coefficient of the 
M particles. 

Finally, the protein coat of eight members of the group, rather than 
having a single polypeptide with a molecular weight of -55,000 daltons, is 
made up of two or three smaller polypeptides (e.g., A VBV) with a 
different molecular weight (21,000-29,000 daltons and 42,000 to 47,000 
daltons, respectively). 

Taking these differences in physical properties into account, Martelli 
and coworkers (68, 74) divided the Nepovirus group into four distinct 
clusters; Murant and Taylor (87) however, divided the group into three 
clusters. These subdivisions were questioned by Francki et al. (33), since 
the properties of some nepoviruses are incompletely known and since 
many of the published values of particle sedimentation and RNA molecu­
lar weight may not be correct. They (33) proposed instead two subgroups, 
based on whether RNA-1 and RNA-2 differed significantly in size. 

These two ways of subgrouping both have tl:~eir merits. The scheme 
shown in Table 6.1 delineates the complexity of the group as a whole; it 
separates definitive from tentative members, except for TTNV, which is 
not fully characterized; and it is consistent with serological clustering, in 
that related viruses fall into the same subgroup. In no case is there 
serological cross-reactivity between members of different clusters. 

The presence of two kinds of coat proteins seems to constitute the 
major single criterion whereby some nepoviruses are still regarded as 
tentative members of the group. In fact, except for luceme Australian 
symptomless virus (LASV) and rubus Chinese seed-borne virus (RCSV), 
in which nucleoproteins apparenly sediment as a single component (4, 
99), all other tentative nepoviruses, including SLRV (35), have two 
nucleoprotein centrifugal components, as do the definitive members of 
the group. 

The importance of the difference in protein coat composition in the 
separation of definitive and tentative nepoviruses has been questioned by 
Francki et al. (33). They pointed out that the smaller polypeptides 

___________________________________ _c. ___________ , __ ' 
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TABLE 6.1. Grouping of nepoviruses according to their physicochemical properties. 
Protein coat with 

one polypeptide 
I 

I 
B component B component heterogeneous 

homogeneous (one molecule of RNA-1 or 
(one molecule of RNA-1) two molecules of RNA-2) 

I ------- --1 

M component with S20,w up to M component with S20,w 

lOO;MW of RNA-2, above 110; MW of RNA-2, 
- 1.5 x 106 above 2 x 106 

Arracacha virus A (AV A) 
Artichoke Italian latent virus 

.(AILV) 
Cocoa necrosis virus (CNV) 
Crimson clover latent virus 

(CCLV) 
Cycas necrotic stunt virus 

(CNSV) 
Grapevine chrome mosaic 

Artichoke yellow ringspot 
virus (A YRV) 

Blueberry leaf mottle virus 
(BBLMV) 

Cassava green mottle virus 
(CGMV) 

Cherry leafroll virus (CLRV) 
Chicory yellow mottle virus 

(CYMV) 

Arabis mosaic virus (ArMV) 
Grapevine fanleaf virus 

(GFLV) 
Olive latent ringspot virus 

(OLRV) 
Potato black ringspot virus 

(PBRV) 
Raspberry ringspot virus 

(RRV) 
Tobacco ringspot virus 

(TobRSV) 

·;;;: "'·"'l'""'-'·~~·,,..,., . ..,,~-:-·~'"'-'"·1.'>''•.•o<::.,.: ·----·;' ,,:r.;::~--~~~ 

Protein coat with two 
polypeptides 

Arracacha virus B (A VB) 
Artichoke vein handing virus 

(AVBV) 
Cherry raspleaf virus (CRL V) 
Lucerne Australian 

symtomless vffus (LASV) 
Lucerne Australian latent 
"' virus (LAL V) 
Rubus Chinese seed-borne 

virus (RCSBV) 
Satsuma dwarf virus (SDV) 
Strawberry latent ringspot 

virus (SLRV) 
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M component with S20,w up to 
lOO;MW of RNA-2, 
~ 1.5 x 106 

Arracacha virus A (AV A) 
Artichoke Italian latent virus 

(AILV) 
Cocoa necrosis virus (CNV) 
Crimson clover latent virus 

(CCLV) 
Cycas necrotic stunt virus 

(CNSV) 
Grapevine chrome mosaic 

virus (GCMV) 
Mulberry ringspot virus 

(MRV) 
Tomato black ring virus 

(TBRV) 
Tomato top necrosis virus 

(TTNV) 

M component with S20,w 

above 110; MW of RNA-2, 
above 2 x 106 · 

Artichoke yellow ringspot 
virus (A YRV) 

Blueberry leaf mottle virus 
(BBLMV) 

Cassava green mottle virus 
(CGMV) 

Cherry leafroll virus (CLRV) 
Chicory yellow mottle virus 

(CYMV) 
Grapevine Bulgarian latent 

virus (GBLV) 
Hibiscus latent ringspot virus 

(HLRV) 
Lucerne Australian latent 

virus (LAL V) 
Myrobalan latent ringspot 

virus (MyLRV) 
Peach rosette mosaic virus 

(PRMV) 
Potato virus U (PVU) 
Tomato ringspot virus 

(TomRSV) 

Arabis mosaic virus (ArMV) 
Grapevine fanleaf virus 

(GFLV) 
Olive latent ringspot virus 

(OLRV) 
Potato black ringspot virus 

(PBRV) 
Raspberry ringspot virus 

(RRV) 
Tobacco ringspot virus 

(TobRSV) 

Rubus Chinese seed-borne 
virus (RCSBV) 

Satsuma dwarf virus (SDV) 
Strawberry latent ringspot 

virus (SLRV) 
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detected in protein coat preparations of viruses like satsuma dwarf (SDV) 
may just be dimers and trimers of the true coat protein subunit, which is 
estimated to have a molecular weight of 14,500 daltons, that is, a value 
comparable to that calculated for the smallest polypeptides observed in 
dissociated virus protein preparations of TomRSV, TobRSV, and OLRV. 
This polypeptide is thought to be the basic unit of the tetrameric coat 
protein (55,000-60,000 daltons) typical of the group (23, 24, 115). 

Different views are held by other workers (99), who consider some of 
the tentative nepoviruses with more than one coat polypeptide to be 
sufficiently distinct from the rest to warrant classification either as a true 
taxonomic subgroup of nepoviruses or as a Plew group with SLRV as the 
type member; they propose the name Slaterivirus for this new group. 

This controversy results from the fact that it is not known whether the 
two polypeptides originate from (a) a Comovirus-like translational 
strategy of RNA-2, whereby a single large polyprotein precursor, pro­
duced in vivo, cleaves by internal proteolysis to form two smaller capsid 
proteins (for a review, see ref. 38) or (b) the originally single, large 
subunit, simply cleaves during chemical dissociation of the protein coat 
for electrophoretic analysis. 

Serological Grouping 

The taxonomy of nepoviruses, that is, the establishment of individual 
"species" within the group, is largely based on serology, which, as 
indicated in the preceeding section, is in turn linked with their physico­
chemical properties. 

Most of the nepoviruses (22 out of 34 definitive and possible members) 
are serologically distinct and are apparently not related to any other 
member of the group. Their identification as separate entities is, there­
fore, unambiguous. 

Serological stability seems to be highest with viruses infecting a single 
host or a narrow range of hosts. A primary example of this is GFLV, the 
populations of which, regardless of their geographical origin, their host 
(species or cultivars of Vitis), and the type of symptomatological re­
sponses they induce in host plants, exhibit a remarkable serological 
uniformity (69). A naturally occurring serological variant of GFLV was 
only recently discovered in Tunisia (116) after a long search. 

A possible explanation offered for the striking serological uniformity of 
GFL V-which may be applicable to comparable cases with other 
viruses-is the low selection pressure to which the virus has been 
subjected in nature because of its strict adaptation to a single host 
(V. vinifera in particular) (69). 

Nepoviruses with a wide natural host range apparently vary much more 
serologically and often give rise to distinct "species." Here, the distinc­
tion between close and distant relationship is arbitrary, and, therefore, it 
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may be hard to decide whether virus isolates are best considered different 
viruses or different strains of the same virus. 

A conservative approach has been used with CLR V, for which many 
serologically distinguishable variants have been regarded as strains of the 
type virus, rather than as different viruses, even though American and 
European strains form two distinct clusters (54). However, the eucharis 
mottle isolate of TobRSV has been considered either a distant serological 
variant of the type virus (86) or a separate entity worthy of its own name 
(120, 122). 

A comparable situation exists with the RRV ·~strain" recoverd from 
artichoke in 'the eastern Mediterranean area. This virus, of which minor 
serological variants from Greece and Turkey are known, differs from 
Scottish and English serotypes of RR V by a serological differentiation 
index of 3 to 6 (96), that is, a value equal to or above that separating 
GFLV from ArMV, or TBRV from GCMV or cocoa necrosis virus (CNV). 
When the geographical origin of the virus and the fact that the host it 
infects is a typical Mediterranean species are considered, it would seem 
appropriate to regard the artichoke strain of RRV as a distinct nepovirus. 
This possibility appears to be strongly supported by recent information 
indicating that although the Greek isolate has only a 9% sequence 
homology with the English serotype ofRRV, it shares 73% of its sequence 
with the Turkish isolate (105). 

An intriguing aspect of serological clustering of nepoviruses is that it is 
largely consistent with the geographical distribution of the viruses (Table 
6.2 and 6.3) and hence, with their possible centers of origin. For instance, 

TABLE 6.2. Grouping of nepoviruses according to serological relatedness. 
Serological clusters Geographical origin 

I. Arabis mosaic virus (ArMV) (type and hop strain) Europe 
Grapevine fanleaf virus (GFL V) Mediterranean-Near 

2. Tomato black ring virus (TBRV) (type and beet 
ringspot strain) 
Grapevine chrome mosaic virus (GCMV) 
Cocoa necrosis virus (CNV) 

3. Raspberry ringspot virus (RRV) (Scottish, English, 
grapevine, and cherry strains) 
Artichoke strain 

4. Strawberry latent ringspot virus (SLRV) 
Rubus Chinese seed-borne virus (RCSBV) 

5. Blueberry leaf mottle virus (BBLMV) 
(blueberry and grapevine strain) 
Grapevine Bulgarian latent virus (GBL V) 

6. Tobacco ringspot virus (TobRSV) (type strain) 
Eucharis mottle strain 
Potato black ringspot virus (PBRV) 

East 
Europe 

Europe 
Africa 
Europe 

Mediterranean-Near 
East 

Europe 
Far East 
North America 

Europe 
North America 
South America 
South America 
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TABLE 6.3. Grouping of nepoviruses according to presumed geographical 
origin. 

Presumed origin and viruses 

1. Europe 
Arabis mosaic virus (ArMV) 

Cherry leafroll virus (CLRV) 
Crimson clover latent virus 

(CCLV) 
Grapevine Bulgarian latent virus 

(GBLV) 
Grapevine chrome mosaic virus 

(GCMV) 
Raspberry ringspot virus (RRV) 
Strawberry latent ringspot virus 

(SLRV) 
Tomato black ring virus (TBRV) 

2. Mediterranean-Near East 
Artichoke Italian latent virus 

(AILV) 
Artichoke vein banding virus 

(AVBV) 
Artichoke yellow ringspot virus 

(AYRV) 
Chicory yellow mottle virus 

(CYMV) 
Grapevine fanleaf virus (GFL V) 
Myrobalan latent ringspot virus 

(MyLRV) 
Olive latent ringspot virus (OLRV) 
Raspberry ringspot virus, 

artichoke strain 

3. North America 
Blueberry leaf mottle virus 

(BBLMV) 
Cherry rasp l~af virus (CRL V) 
Peach rosette mosaic virus 

(PRMV) 
Tobacco ringspot virus (TobRSV) 

Tomato ringspot virus (TornRSV) 

Tomato top necrosis virus (TTNV) 

4. South America 
Arracacha virus A (AV A) 
Arracacha virus B (A VB) 
Potato black ringspot virus 

(PBRV) 

Natural host rangea 

Very wide (fruits, vegetables, 
ornamentals) 

Very wide (fruits, shrubs) 
Crimson clover 

Grapevine 

Grapevine, celery 

Very wide (especially small fruits) 
Very wide (fruits, vegetables, 

ornamentals) 
Very wide (fruits, vegetables, 

ornamentals) 

Narrow (vegetables, grapevine) 

Artichoke 

Narrow (vegetables) 

Narrow (vegetables) 

Grapevine 
Narrow (fruits) 

Olive 
Artichoke 

Blueberry, grapevine 

Narrow (fruits) 
Narrow (fruits) 

Very wide (fruits, vegetables, 
ornamentals) 

Very wide, (fruits, vegetables, 
ornamentals) 

Tomato 

Arracacha 
Arracacha, ocra, potato 
Potato 

Present 
distribution" 

Very wide 

Very wide 
Wide 

Wide 

Wide 

Wide 
Wide 

Wide 

Wide 

Restricted 

Restricted 

Restricted 

Ubiquitous 
Restricted 

Restricted 
Restricted 

Restricted 

Restricted 
Restricted 

Wide 

Very wide 

Restricted 

Restricted 
Restricted 
Restricted 
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TABLE 6.3. Continued 

Presumed origin and viruses 

Potato virus U (PVU) 
Tobacco ringspot virus, eucharis 

strain 

5. Africa 
Cocoa necrosis virus (CNV) 
Hibiscus latent ringspot virus 

(HLRV) 

6. Australia 
Cassava green mottle virus 

(CGMV) 
Lucerne Australian latent virus 

(LALV) 
Lucerne Australian symptomless 

virus (LASV) 

7. Far East 
Cycas necrotic stunt virus (CNSV) 
Mulberry ringspot virus (MRSV) 
Rubus Chinese seed-borne virus 

(RCSBV) 
Satsuma dwarf virus (SDV) 

Natural host range0 

Potato 
Eucharis 

Cocoa 
Hibiscus 

Cassava 

Alfalfa, white clover 

Alfalfa 

Cycas 
Mulberry 
Rub us 

Satsuma mandarin 

Present 
distribution" 

Restricted 
Restricted 

Restricted 
Restricted 

Restricted 

Restricted 

Restricted 

Restricted 
Restricted 
Restricted 

Restricted 

a Ubiquitous, occuring in all major areas of cultivation of the host plant; very wide, recorded from niany 
countries in two or more continents; wide, recorded from many countries in the same continent; 
restricted, recorded from a single or two adjacent countries. 

North Americam TobRSV has serological counterparts in the southern 
part of the continent (TobRSV eucharis strain and PBRV), and, similarly, 
European ArMV, RRV, and TBRV have serologically related "species" 
further south: RRV artichoke strain and GFLV in the Mediterranean 
area, and CNV in Africa. The viruses within each cif these clusters are 
serologically interrelated, which indicates evolution from a common 
ancestor. The fact that these viruses occur in physically contiguous, 
though separated regions, is therefore in line with the likelihood that they 
have developed in these regions. 

GEOGRAPHICAL ORIGIN AND DISTRIBUTION 

There is a consensus that nepoviruses are primarily pathogens of wild 
plants and thus depend for their survival and spread in natural environ­
ments (as opposed to man-made agricultural environments) on dissemi­
nation by nematode vectors and host plant seeds that they may infect (see 
reviews, refs. 40 and 86). It follows that these viruses have little natural 
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mobility, so they tend to be localized in specific territorial enclaves in 
which they become firmly established. 

It is therefore conceivable that the geographical distribution of nepovi­
ruses broadly corresponds to their areas of origin or differentiation, in 
which their hosts. primary and alternative (nsually crop plants); and 
vectors are readily available. 

The notion that nepoviruses may have differential geographical origins, 
first put forward with reference to viruses infecting grapevines in Europe 
and North America (68, 69) and recently extended to other nematode­
borne viruses of the American continent (122), seems tenable and is 
consistent with the distribution of vectors. Th~refore it seems reasonable 
to hypothesize a presumed geographical origin of currently recognized 
nepoviruses, as shown in Table 6.3. From this table, it is evident that 
nepoviruses that generally infect a wide range of hosts have a much wider 
distribution, especially if the hosts are vegetatively propagated perennial 
crops, than have viruses with a few or a single host. Such viruses, as 
would be expected, have a restricte.d distribution. 

A remarkable exception to the latter is GFL V, which although a highly 
specialized pathogen has the widest geographical distribution of the 
nepoviruses. Uncontrolled marketing of infected budwood and rooted 
cuttings have greatly facilitated the spread of GFLV and its major vector, 
X. index, to virtually all the viticultural areas of the world. This also 
applies to records of European nepoviruses such as SLRV, TBRV and 
ArMV, from grapevines in eastern Mediterranean regions (Turkey and 
Israel) and Japan (9); from grapevines, cherry, rhubarb and parsley in 
North America (122), as well as the American TomRSV, from a shrub in 
Australia (24). No plausible explanation is presently available for the 
records of ArMV from a native shrub in the United States (122) and of 
TobRSV from soybean in the People's Republic of China (144). 

Another widely distributed virus, CLRV, is recorded from cultivated 
and native plant species in Europe and North America. Simple dissemi­
nation through infected propagative material may not account for the 
widespread occurrence of CLRV outside Europe, its presumed area of 
origin, since there is serological evidence that strains of CLRV may have 
independently arisen in Europe and North America. This is compatible 
with the notion that, in nature, CLRV spreads by air-borne pollen rather 
than by nematodes (54, 122) (Table 6.4). 

To bra viruses 

Tobraviruses constitute the other recognized taxonomic group of plant 
viruses transmitted by nematodes (Trichodorus and Paratrichodorus). 
These viruses have rigid, rod-shaped particles that vary in length: very 
short, -45 nm.; short (S), 50 to 110 nm; and long (L), 185 to 200 nm. Their 
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Virus 

l Transmitted by 
nematodes 

Arabis mosaic virus (ArMY 
All strains , 

Artichoke Italian latent vim: 
(AILV) 
Italian strain 
Greek strain 

Cherry rasp leaf virus 
(CRLV) 

Grapevine fanleaf virus 
(GFLV) 

Mulberry ringspot virus 
(MRSV) 

Peach rosette mosaic virus 
(PRMV) 

Raspberry ringspot virus 
(RRV) 
Scottish strain 
English strain 

Strawberry latent ringspot 
virus (SLRV) 
All strains 

Tobacco ringspot virus 
(TobRSV) 
All strains 

Tomato black ring virus 
(TBRV) 
Type strain 
Beet ringspot strain 

Tomato ringspot virus 
(TomRSV) 
Type strain 

Grapevine yellow vein strai1 

2. Transmitted by pollen to 
mother plants, no vector 
found 

Cherry leafroll virus 
(CLRV) 

Blueberry leaf mottle virus 
(BBLMV) 

Artichoke yellow ringspot 
virus (AYRV) 

3. Vector unknown 
Arracacha virus A (AV A) 
Arracacha virus B (A VB) 
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TABLE 6.4. Grouping of nepoviruses according to means of natural spread. 
Seed transmission in 

naturally and/or 
Virus artificially infected hosts 

1. Transmitted by 
nematodes 

Arabis mosaic virus (ArMV) Yes 
All strains 

Artichoke Italian latent virus Not detected 
(AILV) 
Italian strain 
Greek strain._ 

Cherry rasp leaf virus Yes 
(CRLV) 

Grapevine fanleaf virus Yes 
(GFLV) 

Mulberry ringspot virus Yes 
(MRSV) 

Peach rosette mosaic virus Yes 
(PRMV) 

Raspberry ringspot virus Yes 
(RRV) 
Scottish strain 
English strain 

Strawberry latent ringspot Yes 
virus (SLRV) 
All strains 

Tobacco ringspot virus Yes 
(TobRSV) 
All strains 

Tomato black ring virus Yes 
(TBRV) 
Type strain 
Beet ringspot strain 

Tomato ringspot virus Yes 
(TomRSV) 
Type strain 

Grapevine yellow vein strain 

2. Transmitted by pollen to 
mother plants, no vector 
found 

Cherry leafroll virus Yes 
(CLRV) 

Blueberry leaf mottle virus 
(BBLMV) 

Artichoke yellow ringspot 
virus (AYRV) 

3. Vector unknown 
Arracacha virus A (AV A) 
Arracacha virus B (A VB) 

Yes 

Yes 

Yes 
Yes 

Vector 

Xiphinema diversicaudatum 

J,ongidorus apulus 
Longidorus fasciatus 
Xiphinema americanum 

Xiphinema index, 
Xiphinema italiae 

Longidorus martini 

Xiphinema americanum, 
Longidorus diadecturus, 
Longidorus elongatus 

Longidorus elongatus 
Longidorus macrosoma 

Xiphinema diversicaudatum 

Xiphinema americanum 

Longidorus attenuatus 
Longidorus elongatus 

Xiphinema americanum, 
Xiphinema rivesi 

Xiphinema californicum 
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TABLE 6.4. Continued 

Virus 

Artichoke vein banding 
virus (A \/BV) 

Cassava green mottle virus 
(CGMV) 

Chicory yellow mottle virus 
(CYMV) 

Cocoa necrosis virus (CNV) 
Crimson clover latent virus 

(CCLV) 
Cycas necrotic stunt virus 

(CNSV) 
Grapevine Bugarian latent 

virus (GBL V) 
Grapevine chrome mosaic 

virus (GCMV) 
Hibiscus latent ringspot 

virus (HLRV) 
Lucerne Australian latent 

virus (LAL V) 
Lucerne Australian 

symptomless virus 
(LASV) 

Myrobalan latent ringspot 
virus (MyLRV) 

Olive latent ringspot virus 
(OLRV) 

Potato black ringspot virus 
(PBRV) 

Potato virus U (PVU) 
Rubus Chinese seed-borne 

virus (RCSBV) 
Satsuma dwarf virus (SDV) 
Tomato top necrosis virus 

(TTNV) 

Seed transmission in 
naturally and/or 

artificially infected hosts 

Not tested 

Not tested 

Yes 

Yes 
Yes 

Yes 

Not tested 

Not tested 

Not detected 

Yes 

Yes 

Not tested 

Not.tested 

Not detected 

Yes 
Yes 

Yes 
Not tested 

Vector 

bipartite genome has two functional RNA species, their S particles 
encapsidate one molecule of the smaller RNA (RNA-2), and their L 
particles contain one molecule of the larger RNA (RNA-1). Coat protein 
subunits are of a single type and have a molecular weight of 21,000-23 ,000 
daltons. 

In contrast with nepoviruses, tobraviruses have increased very little in 
number: The two members constituting the group when it was first 
established (47) are now three (46) (Table 6.5). 

The classification of tobraviruses is based on molecular hybridization, 
that is, the extent of sequence homology between RNA-1 species, rather 
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TABLE 6.5. Tobravirus group: Members, host range, vectors, and geographical distribution. 
Virus 

Tobacco rattle virus (TRY) 

Pea early-browning virus 
(PEBV) 

Pepper ringspot virus (PRY) 

Natural Host Range 

Very wide (vegtables, 
ornamentals, woody 
perennials, shrubs) 

Narrow (legumes only) 

Narrow (vegetables) 

Seed transmission 

Yes 

Yes 

Yes 

Vectors 

Trichodorus cylindricus, T. 
hooperi, T. primitivus, T. 
similis, T. viruliferus; 
Paratrichodorus allius, P. 
anemones, P. christiei, P. 
minor, P. nanus, P. 
pachydermus, P. porosus, P. 
teres, P. tunisiensis 

Trichodorus primitivus, T. 
viruliferus; Paratrichodorus 
anemones, P. pachydermus, 
P. teres 

Paratrichodorus christiei 

~ 

"' 

< 
(1) 
(') 

0 .., 

Geographical distribution 

Very wide (Europe, 
Mediterranean, North 
America, Japan. New 
Zealand) 

Wide (Europe, Mediterranean) 

Restricted (Brazil) 
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than on serology. This led to the recognition of three distinct viruses, each 
with its own separate gene pool: TRV, PEBV, and PRV (106). 

Isolates belonging to any given virus or "species" have strongly 
conserved RNA-1 genes, whereas their RNA-2 genes vary. Therefore, 
serology is, at most, only useful for separating strains within each 
"species.·· For example, broad bean yellow band virus (BBYBV) was 
originally considered to be a possible new member of the group because it 
is not apparently related serologically to the English or Dutch strains of 
PEBV (111). However, it was later demonstrated that its RNA-1 has 
substantial sequence homology with PEBV RNA-1, and, therefore, 
despite its lack of serological relatedness, it w!s synonymized with PEBV 
as a new serotype (107). 

The use of serology to identify certain tobraviruses can be misleading. 
In fact, since sequences of a gene pool of a tobravirus "species" may be 
captured in nature by a gene pool of a different "species", new 
pseudo-recombinants arise in which the RNA-2 (i.e., the part of the 
genome responsible for serological specificity as it codes for the coat 
protein) of a given virus becomes dependent for its replication on the 
RNA-1 of another virus, conferring upon it the serological characteristics 
of the former virus (108) .. 

The geographical distribution of tobraviruses seems to differentiate, to 
a certain extent, individual members of the group from one another, thus 
justifying the concept of the existence of gene pools. 

Vectors 

Many species of nematodes ingest viruses when they feed on the roots of 
virus-infected plants, but it is now well established that the natural 
transmission of nepoviruses is only by longidorid nematodes, and of 
tobraviruses by trichodorid nematodes. However, of the 157 species of 
Xiphinema and 82 species of Longidorus described to date (early 1989), 
relatively few have been implicated as vectors and, indeed, not all 
nepoviruses require nematode vectors for their survival and dissemi­
nation (Table 6.4). So far, at least 14 of about 50 described species of 
Trichodorus and Paratrichodorus are vectors of the tobraviruses TRV 
and PEBV, but each species may only transmit a particular strain. A third 
tobravirus, PRV, has been described from Brazil and P. christiei has been 
implicated as a vector (22, 113) (Table 6.5). 

Distribution of Xiphinema and Longidorus 

Xiphinema and Longidorus have been reported from most parts of the 
world where nematode surveys have been undertaken. Individual species 
mostly occur as discrete populations in a particular region, and analyses 
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of their distribution have been made in an attempt to deduce their 
phylogenetic relationships. From a comparison of several morphological 
characteristics of different longidorid genera, Coomans (27) concluded 
that Xiphinema originated in Gondwanaland and, before the break-up of 
Pangaea, the genus spread to Laurasia. The main speciation occurred in 
Africa, from where the majority of species have been descnbed, with 
South American regarded as another important speciation area. 

Longidorus, with Paralongidorus and Longidoroides, is considered to 
have originated in Southeast Africa and India when these areas were still 
united, and a later spread to Laurasia was accompanied, and followed, by 
a main speciation of Longidorus in the holarctic region, especially 
Europe. 

In their analysis of the European longidorid fauna, Topham and Alphey 
(135) relate the relative impoverishment of species in the northern regions 
to Quaternary glaciation and attribute the highly diverse fauna of the 
eastern Mediterranean countries of Israel, Italy, and Malta to Miocene 
plate tectonic activity in that area. The distribution of longidorid species 
in the Americas also provides evidence of the effect of changing latitude 
on species richness and diversity. 

Much of the present distribution of longidorid species can, in broad 
terms, be related to paleoecology (16, 30, 78, 98, 135), but in relatively 
recent times, many species, especially those associated with crop plants, 
have been disseminated from their centers of origin by man's activities. 
Examples include X. index, the vector of GFL V, which has been 
distributed throughout Europe and the areas of the world where grape­
vines are grown from its center of origin in ancient Persia (50, 82). 
Xiphinema rivesi, a vector of TomRSV in the eastern United States, has 
probably been exported to Europe where it occurs in scattered localities 
particularly in western France, but so far without association with the 
virus. Among Longidorus species, there is evidence that L. elongatus and 
L. vineacola have been introduced into the Scottish Western Islands with 
garden planting material (7, 16) and that L. apulus has been distributed in 
Apulia (southern Italy). on soil adhering to artichoke sprouts used for 
propagation (109). 

Species that have been widely dispersed survive in new biotopes 
because of their genetic adaptability. With time, many of the geographi­
cally separated populations may change sufficiently in their taxonomic 
characteristics to be considered new species. Certainly there is much 
evidence of morphometric variation within widely dispersed species of 
Xiphinema and Longidorus, and this has caused problems not only in 
terms of taxonomy but also in the identification of their role in virus 
transmission. 

Brown and Topham (17) found that populations of Xiphinema diver­
sicaudatum from different countries were distinguishable morphometri­
cally, as well as by certain aspects of their biological behavior, including 
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their reproductive ability and their ability to transmit virus. However, 
although populations could be grouped morphometrically, the differences 
were not considered to be sufficient to establish new species. Morpho­
metric differences between dispersed populations have also been noted in 
Xiphinema coxi, L. elongatus, L. profundorum, and L. vineacola, and 
these species~ together v\':ith X. diversicaudatutn, may be regard~d as 
species complexes iri which the biological characteristics of the popula­
tions also differ to some degree. Xiphinema americanum was recognized 
as a species complex by Lima (62), who concluded that it comprised 
seven parthenogenetic species, four of which he described as new. Other 
workers (52, 123) supported this view, althoug)'l they thought the demar­
cation of these species were problematical and unsatisfactory. However, 
Lamberti and Bleve-Zacheo (62) divided X. americanum sensu Lato into 
six groups of species, totaling 25 in all, with 15 of them new. They thought 
that X. americanum sensu stricto is restricted in its geographical distribu­
tion to the eastern part of North America, and they designated Xiphinema 
californicum a new species to define the morphologically distinct group of 
the western seaboard of the United States. Apart from some outstanding 
queries, records of X. americanum in European countries have been 
assigned to Xiphinema pachtaicum of Xiphinema brevicolle, neither of 
which species has been shown to be a vector in field situations(16). 

Because of the taxonomic reconstruction of X. americanum (62) many 
of the records of its association with TomRSV or TobRSV in North 
America need to be reconsidered. Xiphinema americanum senus stricto 
remains as the vector of some strains of TomRSV, and so far it is the only 
recognized vector of TobRSV, although the geographical distribution of 
the virus is not entirely coincident with that of the vector; however, 
X. californicum is established as the vector of California-type strains 
of TomRSV (53) and is presumed to be the vector of CRLV (62, 90). 
Similarly, X. rivesi is the vector of strains of TomRSV in eastern Canada 
and Pennsylvania (USA) (34), and X. utahense and X. occidum are also 
considered to be potential vectors of some strains of TomRSV (62, 144). 

Records of virus transmission of X. americanum or derived species 
outside North America may be authentic but at most are associated with 
outlier populations of the nematode that have been dispersed, through 
man's agency, from the center of origin of both the vector and the virus in 
North America. 

The other species in North America that have been associated with the 
transmission of nepoviruses in field situations are X. index, which was 
introduced from Europe, and which is unique in its association with 
GFLV, and Longidorus diadecturus, which is a vector of PRMV in 
Ontario (Canada), with X. americanum also being recorded as a less 
efficient vector of the virus (1, 2). In a recent paper (2a), an Ontario 
population of L. elongatus was also recorded as a vector of PRMV but 
only at a low transmission level. 
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Longidorus diadecturus and Longidorus martini, the vector of MRSV 
in Japan (143), are unknown in Europe; they are distinct from other 
Longidorus species in certain morphological details (11). 

Distribution of Trichodorus and Paratrichodorus 

Trichodorid nematodes are widespread in North America and Europe and 
have been recorded from many parts of the world, including some 
relatively isolate.d islands. Most species appear to be locally distributed so 
that different species are present in different landmasses, although within 
a geographical region some species may be more widespread than others. 
In a survey of trichodorids in Europe (3), Paratrichodorus pachydermus 
and Trichodorus primitivis were found to occur in most of the northern 
countries, whereas Paratrichodorus tunisiensis has so far been found only 
in Italy, and Trichodorus hooperi only in the southwest of England. 
Trichodorid species described from Africa, India, and Japan also appear 
to be localized, but surveys in those regions have been insufficient to 
establish the extent of their geographical distribution. 

Although groupings of trichodorids species have been recognized (31, 
65), their taxonomy does not indicate evolutionary directions and centers 
of origin. However, the abundance of species in Europe, and the usual 
occurrence of several species in a single soil sample (64, 90), suggests that 
active speciation is occurring and new biotopes are being invaded. 

Some species are cosmopolitan in their distribution, for example, 
Paratrichodorus minor and Paratrichodorus porosus (66), and may have 
been distributed by man, although trichodorids are susceptible to such 
mechanical injury as occurs in the rough handling of soil samples (8), and 
are unlikely to survive casual transportation from one region to another. 
However, they may be successfully dispersed in flood or irrigation waters 
(6, 114), and their ability to reproduce rapidly allows them to invade and 
exploit new environments quickly (59). 

Most of the records of tobravirus transmission by trichodorid species 
are from Europe and North America (63, 127, 140), but this reflects the 
research interest in these regions, and, in due course, more virus-vector 
associations may be expected to be identified in other parts of the world. 
Currently, there are isolated records of TRV transmissions from Japan 
and New Zealand, and of PRV from Brazil. 

Isolates of TRV from North America differ from those from Europe and 
are transmitted by different species, which supports the view that 
geographical separation is associated with differentiation of virus ~nd 
vector. So far, PEBV has been found only in Europe, but several strams 
have been indentified and at least five trichodorid species have been 
implicated as vectors. 



I ,, 
t 

:.1 

\1' 

1 

ll 
ll 

ll 
11 
Jj 
ti 

ll 
ii 

172 Giovanni P. Martelli and Charles E. Taylor 

Virus-Vector Associations 

Much of the accumulated experimental evidence of nematode transmis­
sion of plant viruses indicates that there is a high degree of specificity in 
the association between virus and vector. Thus, although serologically 
unrelated nepoviruses may share a common vector species (e.g., 
X. diversicaudatum transmits ArMV and SLRV), strains of a virus that 
are serologically distinct are transmitted by different, although closely 
related species of the same nematode genus. For example, the Scottish 
strains of RRV and the unrelated TBRV are transmitted by L. elongatus, 
but the English strains of these viruses have Ixmgidorus macrosoma and 
Longidorus attenatus, respectively, as vectors. Further, the division of 
X. americanum species complex into several discrete species (62) now 
supposes the association of serologically distinct strains of TomRSV with 
different vector species (63). 

Evidence of the specific association between tobraviruses and tricho­
roid vectors is less clear. American and European isolates of TRV are 
serologically distinguishable (see earlier section) and, in nature, are 
associated with different species of Trichodorus and Paratrichodorus; 
indeed, only species of the latter genus have been recorded as vectors in 
North America. 

In comparing the transmission of TR V by nine species of Ttichodorus 
and Paratrichodorus from the Netherlands, van Hoof (141) found that 
transmission occurred only when the nematode and virus came from the 
same locality. A high level of specificity is also apparent with the 
transmission of PEBV, different isolates of which are transmitted by 
several trichodorid species (37, 142). Other evidence suggests that 
specificity of transmission is not well developed. In Britain, the spinach 
yellow mottle strain of TR V was transmitted by a mixed population of 
Trichodorus and Paratrichodorus species (60); in Belgium, five trichoroid 
species transmitted TR V, infecting a potato crop (92), although in this 
case it was not recorded whether a single virus strain was involved. 

A recent study in eastern Scotlanc:l (19) showed that a close relationship 
may be established between different species of trichodorid nematodes 
and serologically distinct isolates ofTRV. At two field sites, P. pachyder­
mus transmitted the majority of the several isolates of TRV (PRN 
serotype) that were present, but Trichodorus cylindricus transmitted 
isolates of a previously uncharacterized serotype. 

For some years, it has been recognized that if the vector status of a 
nematode is to be established with any certainty, several criteria must be 
met in experimental work (75, 127, 136). These include (a) the virus must 
be available to the nematode; (b) test conditions must be suitable for 
transmission to occur; (c) the possibility of virus contamination of the bait 
plants must be avoided. To these criteria, Trudgill et al. (139) added 
(d) the virus and nematode must be correctly identified; (e) bait plant 
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tissues must be shown to be infected with the virus being tested; and 
(f) the nematode being tested must be shown to be the only possible 
vector in that experiment. Test procedures have now been developed to 
meet these criteria, and they are sufficiently sensitive to detect small 
differences in efficiency of transmission between different species of 
longidorids and trichodorids (19, 138). Further, the refinements incorpo­
rated into the procedures have led to the conclusion that some of the 
anomalous results previously obtained in laboratory experiments and 
unsupported by field evidence (127, 132) might have been due to 
contamination (77) and that two-thirds of the published results of virus­
·vector associations are invalid (139) . 

Efficient extraction of nematodes from the soil is a prerequisite for 
virus transmission tests. In a comparison of methods used to extract 
virus-vector nematodes, Brown and Boag (18a) concluded that a de­
canting and sieving technique, with 200-g soil samples, is the most 
satisfactory procedure for longidorid and trichodorid nematodes. 

Variation in Transmission 

Although the authenticity of many of the virus-vector associations is well 
established, the different results of transmission tests obtained by differ­
ent workers suggest that vector species differ in their efficiency of 
transmission; -but because of the different experimental conditions, this 
has been difficult to substantiate. However, when precise test procedures 
were used, it was demonstrated that X. diversicaudatum is an efficient 
vector of ArMV, whereas L. elongatus and L. macrosoma are inefficient 
vectors of RRV (Scottish strain) and RRV (English strain), respectively 
(134, 138). 

Recent experiments have also shown that vector populations that are 
widely separated geographically may differ in their efficiency of transmis­
sion of the virus with which they are normally associated. Comparing 
populations of X. diversicaudatum from 10 countries as vectors of ArMV 
and SLRV, Brown (12, 14) found that those from France, Italy, and Spain 
rarely transmitted the viruses, whereas populations from other countries 
were all efficient vectors (Table 6.6). These populations had been exposed 
to the British strains of the viruses, but when the Italian population was 
exposed to an Italian strain of SLR V, the efficiency of transmission did 
not improve. In another test (18), X. diversicaudatum from Scotland and 
Italy was exposed to two Italian strains and the type (British) strain of 
SLRV. The Scottish population readily transmitted the type strain of the 
virus, but did not transmit the Italian strains; the Italian population 
transmitted all three virus strains but at a very low frequency. Immuno­
sorbent electron microscopy (100) of the nematodes demonstrated that 
they had ingested the viruses to which they had been exposed, but 
electron microscopy of sections of the odontophore, the site of virus 

-------------~---~----- --
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TABLE 6.6. Transmission of the type strains of arabis mosaic (ArMV) and 
strawberry latent ringspot (SLRV) viruses by IO populations of Xiphinema 
diversicaudatum.0 

Percentage number of transmissionsb 

Nematode Population 

Buigaria 
England 
New Zealand 
Norway 
Scotland 
Switzerland 
United States 
France 
Italy 
Spain 

ArMV 

100 
96 
96 
96 
92 
96 
4& 
IO 
4 
0 

•Compiled from Brown (12, 14) and Brown and Trudgill (18). 
h Using groups of two nematodes per test pot; 25 replicates of each test. 

SLRV 
48 
60 
60 
40 
68 
56 
36 
10 
2 

15 

retention in Xiphinema vectors, revealed that few or no virus particles 
were present in those populations that failed to transmit. Although no 
significant morphometric differences were apparent between the popula­
tions of X. diversicaudatum from the 10 countries (17), the marked 
difference in transmission efficiency of the Italian, and possibly also the 
French and Spanish, populations could be considered to indicate putative 
new species. However, it is interesting to note that the Scottish and 
Italian X. diversicaudatum were capable of cross-breeding and that the 
resulting progeny were intermediate between the parents in efficiency of 
transmission (13). 

Differences in efficiency of transmission have also been shown to occur 
among Longidorus vectors. A Scottish population of L. elongatus trans­
mitted the type strains of TBRV and RRV more frequently than the 
English population, and neither population transmitted the German 
potato bouquet strain of TBR V, which is a distinct serotype and is 
considered to have as a vector L. attenuatus (15). 

In laboratory tests, potato bouquet and two other isolates of TBRV 
were transmitted less frequently by an English population of L. attenua­
tus then were several English isolates of the virus, including an isolate 
associated with celery yellow vein disease (20). This, and similar evidence 
for other vectors, supports the contention that local populations of a 
vector species are most efficient at transmitting local virus isolates, and, 
thus, geographical separation tends to lead to high levels of specificity 
between virus and vector. 

Nematode-Virus Interactions 

Electron microscopy of thin sections of nematode vectors has identified 
the virus retention sites within each of the vector genera. In Longidorus 
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FIGURE 6.1. Transverse section of the odontostyle and guiding sheath of Longi­
dorus elongatus reared on a plant infected with raspberry ringspot virus. Particles 
of the virus (V) are present in association with the inner surface of the odontostyle 
and between the odontostyle and the guiding sheath (bar, 200 nm). Courtesy of 
W.M. Robertson. 

species, virus particles are adsorbed to the inner surface of the odonto­
style (129, 132, 138), and in L. elongatus, particles of RRV and TBRV 
may also be located between the odontostyle and the guiding sheath (129) 
(Figure 6.1). In X. diversicaudatum carrying ArMV or SLRV (130), 
X. americanum carrying TomRSV (76), or X. index carrying GFLV (97, 
130), virus particles are specifically associated with the cuticular lining of 
the odontophore, the slender esophagus, and the esophageal pump; the 
maximum concentration of particles usually occurs in the anterior region 
of the odontophore. 
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In trichodorid vectors, TRV particles have been found to be retained in 
association with the lining of the food canal from the anterior region of the 
esophastome to the esophagointestinal valve (131) but not attached to the 
onchiostyle. The tubular particles may be attached by their sides or their 
ends: the long particles tend to line up parallel to the long axis of the food 
canal, whereas the short particles tend to adhere by their ends (104, 132). 

Experiments with pseudo-recombinant isolates of RRV and TBRV 
have indicated that the specific association of a nepovirus with its vector 
is determined by the RNA-2 of the virus genome, which carries the coat 
protein cistron (41, 43, 49). Thus, association between virus and vector 
appears to depend on some feature of the protein coat that interacts 
specifically with the retention site within the nematode. 

The tobraviruses also have RNA genomes in two pieces. Pseudo­
recombinants of TRV strains have been produced (46), and although they 
have not been used in transmission experiments with trichodorid vectors, 
it seems likely that the mechanism of specific association between virus 
and vector is similar to that of nepoviruses. 

The mechanism whereby virus particles are adsorbed specifically at the 
retention site within the nematode vector has been a subject for specula­
tion for some time (127, 133). Recent investigations indicate that specific 
recognition between virus and vector may involve the interaction of 
complementary molecules at their point of contact, as occurs in a variety 
of host-pathogen systems (118). In X. diversicaudatum, a discontinuous 
layer of carbohydrates lines the odontophore and esophagous, and ArMV 
and SLRV particles attach only to the carbohydrate zones (101, 102, 103) 
(Figure 6.2). In P. pachydermus, a vector of TRV, the total lining of the 
wall of the esophagous also stains for carbohydrates (102). Thus, virus 
retention in Xiphinema and trichodorid vectors may involve an interac­
tion between carbohydrate moieties on the food canal wall and comple­
mentary lectin-like molecules on the protein coat of the virus. 

Carbohydrates have not been detected on the guiding sheath or the 
odontostyle in L. elongatus (101). However, by labeling the odontostyle 
with cationized ferritin, a strong negative charge was shown to be present 
on the exterior surface of the adontostyle and on the wall of the lumen, 
and this may account for the retention of positively charged virus 
particles (101). 

Dissociation of virus particles from the retention site is thought to occur 
when the pH of the lumen is changed by the passage of secretions from 
the esophageal glands during the initial stages of feeding (127, 133). In 
Longidorus vectors, specificity and efficiency of transmission may be 
determined in some cases, if not in all, by the mechanism of dissociation 
of the virus particles from the retention site (127). For example, when L. 
macrosoma was exposed to the English and Scottish strains of RRV, the 
former was transmitted, but not the latter, as expected, although virus 
particles were found to be adsorbed to the inner surface of the odonto-
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B 

FIGURE 6.2. (A) Transverse section of the lumen of the odontophore of 
Xiphinema diversicaudatum reared on a plant infected with arabis mosaic virus. 
The section is stained to show the thin discontinuous carbohydrate layer in 
association with cloud-like areas (arrows). The unstained virus particles are 
within the cloud-like areas. (B) Transverse section of the lumen of the odonto­
phore of X. diversicaudatum reared on a plant infected with arabis mosaic virus 
and stained with uranyl acetate and lead citrate to show virus particles (V) (bars, 
200nm). Courtesy of W.M. Robertson. 

style in both sets of nematodes (132, 137). In terms of surface charge 
density, this was considered to indicate that the change in pH brought 
about by the esophageal gland secretions altered the surface charge of the 
particles of the English strain and resulted in detachment and transmis­
sion but that it did not have a similar effect on the virus particles of the 
Scottish strain (127). 

The assumed difference in the mechanism of transmission in Longi­
dorus vectors, compared with Xiphinema and trichodorid vectors, also 
reflects other observed differences between the two groups of nematodes. 
Viruses are retained for only a few weeks, at most, in Longidorus vectors 
and transmission is inefficient; in Xiphinema and trichodorid vectors, 
however, associated viruses may be retained for several months and 
transmission is efficient. 

Discussion 

The survival and dissemination of plant viruses depends on their effective 
transmission and their access to suitable host plants for their multiplica­
tion. Tobraviruses and nepoviruses are dispersed over short distances by 
their nematode vectors, that is, to the extent of the area occupied by the 
local population, but dissemination to new sites may occur through the 
distribution of infected week seeds or pollen. Thus, nematodes may not 
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appear to be essential for the maintenance and spread of tobraviruses and 
nepoviruses, and, indeed, some of the nepoviruses are not associated 
with nematode vectors (Table 6.4). However, the interaction between 
virus, nematode, and host plant is a dynamic process, which, at various 
stages, offers opportunities for genetic selection to the advantage of the 
virus. 

The nematode-transmitted viruses are essentially parasites of wild 
plants and usually infect them without causing obvious symptoms of 
infection. However, when crop plants are infected, symptoms are almost 
invariably severe and, in some cases, may cause the death of the plants, 
as RRV in some raspberry cultivars and ~omRSV and CLRV in union 
necrosis in apple and walnut, respectively. Similarly, most of the longi­
dorid and trichodorid vectors have wide host ranges among wild plants 
with which they are compatible enough as not to cause excessive injury 
by their feeding; but when the roots of crop plants are attacked, they are 
often severely galled and the growth of the plant is affected (127). 

The feeding apparatus of Longidorus and Xiphinema nematodes is a 
Jong tubular odontostyle with which they pierce the young roots and feed 
on the cell contents. Feeding commences with the penetration of a 
column of cells near the root apex, and each cell may be fed on 
progressively until the tip of the odontostyle is located at the feeding site 
some five to seven cells distant from the rhizodermis. Secretions from the 
esophageal glands induce a hypertrophic reaction in the root cells around 
the feeding site, and the coenocyte or cisternum that is formed, depending 
on the species, provides a rich and readily accessible food source for the 
nematode. The high metabolic activity of the cells presumably is also 
conducive to the multiplication and translocation of viruses within the 
root tissues. 

Jn trichodorid nematodes, the feeding apparatus is in the form of a solid 
tooth, or onchiostyle, which is used to penetrate the rhizodermal cells of 
the root tip. Secretions from the esophageal glands are injected into the 
cell soon after the wall has been penetrated and the contents of the cell are 
usually ingested within a few seconds, after which the nematode moves to 
another rhizodermal cell. It is thought that virus particles are also injected 
into the cell with the secretions of the esophageal glands, and that the 
virus quickly passes to adjacent cells, or possibly that virus transmission 
occurs on those occasions when the nematode fails to ingest the total 
contents of the cell on which it is feeding. 

Seemingly, nematodes are passive carriers of the viruses with which 
they are associated, in the sense that the viruses do not invade the 
nematode tissues or have any obvious effect on their biological behavior. 
Nevertheless, the vectors may affect the transmission of the viruses. For 
instance, vector species vary from being efficient to highly inefficient in 
their ability to transmit virus. Populations of X. diversicaudatum from 
Britain are efficient vectors of ArMV and SLRV, whereas Italian popula-
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tions only infrequently transmit these viruses. Thus, the same viruses 
may be disseminated at different rates in different regions. Also, the 
adsorption of virus particles at the site of retention within the vectors 
involves the interaction of the virus coat protein with particular features 
of the cuticular lining of the nematode food canal, and this in itself may 
have a selective effect on the virus. 

Because of the requirement of compatibility between virus and vector 
to ensure the survival of the virus, it might be expected that the coat 
protein would be a relatively invariant property of each virus. There is, 
however, increasing evidence that, in field situations, several minor 
antigenic "11.riants of a virus may be present together. Such variants have 
often been revealed when cultivars that are considered to be immune to a 
particular virus are planted and become infected. 

Variants of RRV and ArMV that broke the resistance of raspberry 
cultivars in Scotland were revealed in this way (88, 134), and, more 
recently, further isolates of both viruses were found to infect 
raspberry cultivars that had been shown to be immune to the viruses in 
graft-inoculation tests (57). Crops constitute a large monoculture area that 
can apply a selection pressure to the viruses, but the new isolates may 
have characteristics that are unfavorable in an ecological environment 
outside of the crop. Such characteristics include poor seed transmissi­
bility and lack of virulence (40), which are conferred by RNA-1, and thus 
are not believed to be influenced by nematode transmission. 

In the above examples, the viruses have wide host ranges that include 
wild herbaceous species, and the genetic variation displayed by these 
viruses contrasts with the lack of variation of GFL V, which in nature has 
so far been found only in association with Vitis spp. 

The genome of nepoviruses is bipartite, with RNA-1 and RNA-2 
located in separate particles, but because these viruses have a similar coat 
protein, it is assumed that each type is equally ingested and transported 
by the nematode vector. However, although there is good circumstantial 
evidence for linking transmission with the properties of the virus coat 
protein, and hence linking it with the antigenic characteristics of the virus, 
there remains the possibility that the regions in the coat protein that are 
important for the attachment and release of particles at retention sites in 
the nematode vector are not involved in the immunological reaction (20). 
Further, some properties determined by RNA-1 may affect transmissi­
bility by the vector, as suggested to explain the poorer transmissibility of 
a pseudorecombinant isolate of TBRV compared to that of the parental 
source of its RNA-2 (43). 

The RNA-1 and RNA-2 of tobraviruses are located in particles of 
different lengths, and these are readily visualized by electron microscopy 
of thin sections of the vector species. In the limited number of observa­
tions so far made, short and long particles of TRV are randomly 
distributed at the site of retention in the nematode. Different isolates of 
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the virus, however, cannot be identified in thin sections of the nematodes 
and the experimental evidence is inconclusive about specific transmission 
by trichodorid vectors. 

The RNA-I of tobraviruses is strongly conserved, and the RNA-2 is 
variable; in nepoviruses, however, both parts of the genome diverge more 
or less in pareilei ~32). The RNA-2 nucleotide sequence seems to differ 
markedly between isolates. Harrison and Robinson (46) suggest that the 
variation in the tobravirus particle protein indicates that there is no 
selection pressure for its conservation, and hence it does not play a key 
role in determining vector transmissibility and specificity. A wide range of 
naturally occurring strains of both tobraviru~es and nepoviruses has been 
found, but the processes by which these variants are produced remain a 
matter of speculation. 

Nepoviruses and tobraviruses have two complementary methods of 
dispersion that ensure their survival in a particular location and their 
distribution to new areas. The nematode vectors are usually static 
populations, and the spread of virus is slow, but this slow spread is 
compensated for by the long period of retention of the viruses in the 
vectors, which, in the case of Xiphinema and trichodorid nematodes, may 
ensure survival between plantings of susceptible crops or through periods 
when plants are absent in natural situations. Infection of the seeds of 
weed hosts provides a means of perennation of the viruses over long 
periods of time and a means of spread to new sites. Weed seed infection is 
more prevalent among Longidorus vectors, which retain viruses for only 
a few weeks, compared with retention for several months in Xiphinema 
and trichodorid nematodes. 

In the past, dispersal of viruses to new areas was probably attained 
solely through infected week seeds, and continued existence of viruses 
would depend on their coming into contact with suitable vector species. 
In more recent times, man has been responsible for the distribution of 
virus and vector with commercial vegetative material, examples of which 
are X. diversicaudatum and ArMV and X. index and GFLV. However, 
only the less vulnerable of the nematode vector species have been widely 
distributed, and most species remain in relatively limited ares. Thus, it is 
not surprising that surveys continue to record more and more species in 
the genera associated with virus transmission. If nematode vectors apply 
some selection pressure on the viruses they carry, then it seems likely 
that there will be a continuing genetic drift of both viruses and vectors to 
establish new associations. 
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