Orthotospovirus Groundnut bud necrosis virus

Scientific Name
Orthotospovirus groundnut bud necrosis

Synonyms
Groundnut bud necrosis (GBNV), bud blight disease, bud necrosis disease (BND), bud necrosis virus, groundnut bud necrosis disease, groundnut bud necrosis tospovirus, mung bean leaf curl disease, peanut bud necrosis, peanut bud necrosis tospovirus, peanut bud necrosis virus (PBNV).

Type of Pest
Virus

Taxonomic Position
Class: Not assigned, Order: Bunyavirales, Family: Tospoviridae

Reason for Inclusion in Manual
Pests of Economic and Environmental Concern List, 2017-present.
Solanaceous Hosts Commodity Survey Pest, 2017-present.

Background Information
Groundnut bud necrosis (GBNV) was initially described in India in an annual report in 1949 and later named “bed necrosis” in 1968 (Reddy et al, 1995). It was determined to be caused by infection of a tospovirus (Jain et al., 2005). Tospoviruses are among the most important plant virus groups in the world and infect a wide range of economically important crop plants (Mandal et al., 2012). Until 1990, Tomato Spotted Wilt Virus (TSWV), the namesake virus of the tospovirus genus, was considered to be the only species of tospovirus. However, in 1992 it was suggested based on serology that bud necrosis of groundnut was caused by a tospovirus different from TSWV, and the virus was named Groundnut bud necrosis virus (GBNV) (Mandal et al., 2012). Tospovirus species are often distinguished from each other based on the amino acid sequence of the nucleocapsid (N) gene (Mandal et al., 2012). In 2016, a change in the taxonomy of tospoviruses was proposed. A new order, Bunyavirales, was created, and the genera Tospovirus was changed to Orthotospovirus (ICTV, 2016).

Pest Description
Tospoviruses (aka. Orthotospoviruses) are quasi-spherical (80–110 nm in diameter) enveloped isometric RNA viruses with a tripartite genome containing...
small (S), medium (M), and large (L) segments of single stranded RNA (Bhat et al., 2002). The complete genome of GBNV (type isolate, groundnut) has been sequenced, and it consisted of three linear single-stranded RNA molecules, the large (L, 8.9 kb), the Medium (M, 4.8 kb), and the small (S, 3.05 kb) RNAs. The L RNA is entirely of negative polarity, with one open reading frame located on the viral complementary strand encoding the viral polymerase of the 330 kDa L-protein. The M RNA molecule encodes a 34.3 kDa movement protein (NSm) in the viral sense and a 127.3 kDa precursor to the two viral membrane glycoproteins, Gn and Gc, in the viral complementary sense (Satyanaryana et al., 1996). The S RNA molecule encodes the 49.5 kDa nonstructural protein (NSs) in the virus sense and the 30.6 kDa nucleocapsid (N) protein in the virus complementary sense. The NSs protein of GBNV has been characterized as a bifunctional enzyme containing RNA stimulated ATPase and 5’ phosphatase activities, which possibly participates in suppression of the host defense mechanism (Mandal et al., 2012). Comparative sequence analysis of GBNV isolates from groundnut, mung bean, and tomato revealed that the genome of the M RNA was considerably different in their intergenic regions (56 to 89% sequence identity) and Gn/Gc protein regions (Mandal et al., 2012).

Biology and Ecology

Orthotospoviruses are transmitted by thrips (Thysanoptera) insects (Fig. 2) in a circulative and propagative manner (Bhat et al., 2002; Mandal et al., 2012). A unique feature of the thrips – tospovirus relationship is that only adults which acquired the virus at the first larval stage are able to transmit the virus (Sakimura, 1963). Larval and adult thrips both transmit GBNV in a persistent manner (Manjunatha, 2008). A survey by Gopal et al. (2011) found that GBNV incidence was higher in rainy season crops than in post-rainy season crops.

Orthotospoviruses are not seedborne, and it is assumed that the primary spread of these viruses is by thrips coming from other crops or weeds, whereas secondary spread takes place from infected plants within the same field (Mandal et al., 2012). The primary sources of GBNV include a range of solanaceous and fabaceous hosts which can sustain viral infection and support thrips vector multiplication (Mandal et al., 2012). Spread of this virus in peanut/groundnut, however, is mostly monocyclic, and disease incidence in this host depends on infection by thrips that acquire the virus from other crops or weed hosts (Mandal et al., 2012).

Symptoms/Signs

In general, symptoms of GBNV infection, which include chlorosis, mottling, lesions, stunted growth, necrotic rings, and bud necrosis, are very similar regardless of the infected host or virus isolate (Mandal et al., 2012).
In peanut (Fig. 3): “Initially, mild chlorotic spots appear on young quadrifoliate leaves, and subsequently necrosis and chlorotic rings develop. In rainy and post-rainy seasons, necrosis of the terminal bud is the main characteristic symptom. Secondary symptoms such as stunting, axillary shoot proliferation, and malformation of leaflets are common. Plants infected early are bushy, stunted, and die prematurely. If plants older than one month are infected, the symptoms are restricted to a few branches only” (Mandal et al., 2012).

In tomato (Fig. 1, 4): Symptoms include necrotic rings on leaf, stem necrosis, concentric rings and patchy color on fruit (Manjunatha, 2008; Mandal et al., 2012). Necrosis of the foliage often leads to collapse of a stem or of the whole plant resembling symptoms of blight. In general, tomato plants infected at an early stage often collapse and die (Akram et al., 2012).

In potato (Fig. 5): Symptoms of infection are characterized by stem/petiole necrosis, foliar spotting/deformation/necrosis and stunting of the plant (Kaushal et al., 2010).
Necrosis of foliage often leads to collapse of a stem or the entire plant. In general, potato plants infected at an early stage often collapse and die (Akram et al., 2012; Pundhir et al., 2012).

In bean, pea, and other legumes (Fig. 7, 8, Appendix B): GBNV infection induces chlorotic and necrotic spots on leaves, browning in veins, stem necrosis, ring spots on fruits and pods (Akram and Naimuddin, 2010; Akram et al., 2012).

Pest Importance

Total annual losses due to GBNV in Asia are estimated at more than $89 million (Pappu, 1997). Disease incidence in tomato of over 90% has been reported in India (Manjunatha, 2008; Mandal et al., 2012). Yield losses of 80% have been reported in infected peanut fields (Manjunatha, 2008). Stem necrosis in potato caused by GBNV is also known to occur in India, and disease incidence of 50-90% and losses of up to 29% have also been reported there (Mandal et al., 2012; Pundhir et al., 2012). Additionally, disease incidence in bean cultivars of up to 20% has been reported (Akram et al., 2012).

Numerous crops, including peanut, potato, tomato, and beans are important to the United States and vulnerable to GBNV infection. In 2015, peanut was grown on 1.625 million acres, and over 6.2 billion pounds of peanuts were produced (USDA-NASS, 2016). Tomato was planted on 97,500 acres, and the value of the harvest was over $1.2 billion (USDA-NASS, 2016). Potato was planted on 1,065,000 acres, and over 49 billion pounds of potatoes were produced (USDA-NASS, 2016). Snap beans were planted on 77,600 acres, and the value of the harvest was over $236 million (USDA-NASS, 2016).

At the genus level, tospoviruses are listed as a harmful organism in the following countries: Australia, Georgia, Japan, and Nauru (USDA-PCIT, 2017). There may be trade implications with these countries if GBNV becomes established in the United States.

Known Hosts

Major hosts: *Arachis hypogaea* (peanut), *Solanum lycopersicum* (tomato), and *Solanum tuberosum* (potato) (Akram et al., 2004; Ghanekar et al, 1979; Gopal et al., 2011; Jain et al., 2004, 2005; Manjunatha, 2008; Reddy et al., 1968; Somani and Gopal, 2004).

Minor hosts: *Allium cepa* (onion), *Capsicum annuum* (chili), *Citrillus lanatus* (watermelon), *Citrullus vulgaris* (watermelon), *Colocasia esculenta* (taro), *Corchorus*
capsularis (white jute), Cucumis pepo (muskmelon), Cucumis sativus (cucumber), Cucurbita pepo (pumpkin), Daucus carota (carrot), Dolichos lablab (sem, hyacinth bean), Glycine max (soybean), Phaseolus vulgaris (French bean), Jasminum sambac (jasmine), Pisum sativum (pea), Sesamum indicum (sesame), Sesbania rostrata (sesbania), Solanum melangena (eggplant), Vicia faba (faba bean, fava bean), Vigna mungo (black gram), Vigna radiata (mung bean), Vigna sinensis (cowpea), Vigna trilobata (African gram) and Vigna unguiculata (cowpea, southern pea). (Akram et al., 2004, 2013; Akram and Naimuddin, 2010a, 2010b, 2012a; Bhat et al., 2002; Ghanekar et al., 1979; Golnaraghi et al., 2002; Gopal et al., 2011; Jain et al., 2002, 2005, 2007; Kunkalikar et al., 2011; Manjunatha, 2008; Sivaprasad et al., 2011a; Sujitha et al., 2012, 2013).

Wild/Weed hosts: Acalypha indica (copperleaf), Acanthospermum hispidum (bristly starbur), Ageratum conyzoides (tropic ageratum), Alysicarpus longifolius (moneywort), Alysicarpus rugosus (red moneywort), Alysicarpus spp. (moneywort), Amaranthus spp. (pigweed), Calotropis gigantea (giant milkweed), Catharanthus pusillus (tiny periwinkle), Catharanthus roseus (Madagascar periwinkle), Commelina benghalensis (Benghal dayflower), Commelina jacobi, Corchorus trilocularis (jew’s mallow), Crotalaria spp. (wild sunnhemp), Cyanotis cucullata, Eclipta prostrata (false daisy), Euphorbia geniculata (garden spurge), Lagascea mollis (silkleaf), Parthenium hysterophorus (carrot weed), Physalis minima (cape gooseberry), Spermacoce hispida (shaggy buttonweed), Vigna glabrascens, Vigna hainiana, and Vigna umbellata (rice-bean) (Manjunatha, 2008; Baskara Reddy et al., 2011; Gopal et al., 2011;; Vemana et al., 2015; Daimei et al., 2017).

![Figure 5: Necrotic spots on GBNV infected potato leaves. Courtesy of Mohammad Asnar, Bihar Agriculture University.](image)

Experimental hosts: Alternanthera sessilis (sessile joyweed), Beta vulgaris (beet), Cajanus cajan (pigeon pea), Canavalia ensiformis (jackbean), Capsicum spp. (pepper), Cassia spp. (cassia), Chenopodium album (lambquarters), Chenopodium amaranticolor (giant lambquarters), Chenopodium quinoa (quinoa), Crotalaria juncea (sunn-hemp), Cucumis melo (cantaloupe), Datura stramonium
Jimsonweed, Dolichos uniflorus (horsegram), Emilia sonchifolia (lilac tasselflower), Gomphrena globosa (globe amaranth), Luffa acutangula (angled loofah), Nicotiana benthamiana (tobacco), Nicotiana clevelandii (Cleveland’s tobacco), Nicotiana glutinosa (tobacco), Nicotiana rustica (Aztec tobacco), Nicotiana tabacum (tobacco), Nicotiana spp. (tobacco), Petunia hybrida (petunia), Phaseolus lunatus (lima bean), Physalis floridana (husk-tomato), and Zinnia elegans (zinnia) (Ghanekar et al., 1979; Golnaraghi et al., 2002; Manjunatha, 2008).

Known Vectors (or associated insects)

Frankliniella fusca (tobacco thrips), F. occidentalis (western flower thrips), F. schultzei (common blossom thrips), Scirtothrips dorsalis (chilli thrips), Thrips palmi (melon thrips), and T. tabaci (onion thrips) are known vectors of GBNV (Manjunatha, 2008; Pranav and Krishnaraj, 2010).

Known Distribution

Asia: Bangladesh, China, India, Indonesia, Iran, Nepal, Pakistan, Sri Lanka, Thailand, and Vietnam, however the report of occurrence of GBNV in Thailand was found to be unsubstantiated in 2008 (Golnaraghi et al, 2002; Jain et al, 2004; Chiemsombat et al, 2008; Manjunatha, 2008; Akhter et al, 2012).

Pathway

The most likely pathway of entry for GBNV is by transport of infected plant material or infected insect vectors. The import of Arachis and Solanum spp. plant material for propagation is generally prohibited (USDA, 2017), but interceptions of such plant material do occur. Since 2000, there were interceptions of Solanum lycopersicum plant material (excluding seeds) intended for propagation from China (14), India (3), and Thailand (3) (AQAS, 2017).

Since 2007, the insect vector Thrips palmi has been intercepted at U.S. ports of entry 2,434 times from countries where GBNV is known to be present. These interceptions came from Thailand (1,992), India (72), China (358), Vietnam (6), Nepal (4), Iran (1), and Bangladesh (1) (AQAS, 2017). Interceptions of Thrips palmi have occurred at ports of entry throughout the entire United States on baggage, mail, permit cargo, and general cargo (AQAS, 2017). The vast majority of the T. palmi interceptions occurred on Dendrobium orchids from Thailand, but a handful of other genera of plants from Thailand and India mostly are carriers as well. (AQAS, 2017). Some of the genera of orchids found with the pests to a minor degree have included Oncidium, Vanda, Aranthera and Mokara (AQAS, 2017). Non-orchids found to contain the thrips were chrysanthemums and okra from India (AQAS, 2017). Other unidentified Thrips spp. have also been intercepted 178 times from known host countries since 2007 (AQAS, 2017).

Frankliniella spp. are also known to vector GBNV (Pranav and Krishnaraj, 2010). There were 224 interceptions of Frankliniella spp. from nine different countries which have GBNV since 2007, including: China (98), India (71), Iran (24), Thailand (20), Vietnam (3), Nepal (3), Sri Lanka (2), Bangladesh (2), and Pakistan (1), and
this number is increasing (AQAS, 2017).

Potential Distribution within the United States

Two thirds of all U.S. commercial tomato acreage is found in California and Florida (USDA-NASS, 2016). Other states with significant commercial tomato cultivation include: Ohio, Tennessee, North Carolina, New Jersey, New York, Michigan, South Carolina, Georgia, and Virginia (USDA-NASS, 2016). Tomato is also popular with home gardeners nationwide.

Georgia is the largest peanut producing state and accounts for over half of all commercial peanut production in the United States. The other top commercial peanut producing states are Alabama, Florida, Texas, North Carolina, South Carolina, Mississippi, and Virginia (USDA-NASS, 2016).

Potato is grown throughout the United States in backyard gardens and is grown commercially. Idaho and Washington account for roughly half of the U.S. commercial potato acreage. Other states with significant commercial potato
cultivation include: North Dakota, Wisconsin, Colorado, Maine, Michigan, Minnesota, and Oregon (USDA-NASS, 2016).

In addition to many GBNV hosts, the following vectors of GBNV are all present in the United States: *Frankliniella fusca*, *F. occidentalis*, *F. schultzei*, *Scirtothrips dorsalis*, *Thrips palmi*, and *T. tabaci* (Reitz et al., 2011; NISIC, 2016). If GBNV becomes established in the United States, chances of spread through vector transmission are high.

A recent combined host distribution map for GBNV developed by USDA-APHIS-PPQ-CPHST (Fig. 6) identifies areas of high host acreage based on the combined acreage of major hosts peanut, potato, and tomato. Although multiple *Arachis* spp. (groundnut) are susceptible to GBNV, information was only available for *Arachis hypogaea* (peanut).

This map illustrates that though there are counties in nearly all states with a low level of risk. Alabama, California, Colorado, Florida, Georgia, Idaho, Michigan, Minnesota, North Carolina, North Dakota, South Carolina, Texas, Washington, and Wisconsin, however, have counties with the highest level of risk for GBNV based on host density. The host distribution maps are based on county level data. To combine host data for pest-specific analyses, CPHST normalizes the data by dividing the total host present in a county by overall county area (acres of host in county/total acres of county). This yields host by county area and allows CPHST to properly combine host distributions without the skewing effects of overall county size. For example, 500 acres of broccoli grown in Tulare County, CA can now be compared to 500 acres of broccoli grown in Scott County, AR. The individual host acreage maps for peanut, potato (continental, Alaska, and Hawaii), and tomato are provided in the Appendix at the end of the document.

Survey

Approved Method for Pest Surveillance: The CAPS-approved survey method is visual survey for symptomatic host material.

*For the most up-to-date methods for survey and identification, see Approved Methods on the CAPS Resource and Collaboration Site, at http://caps.ceris.purdue.edu/.

Key Diagnostics

Approved Method for Pest Surveillance:
Serological: A field-based screening method/assay (ELISA) is commercially available for GBNV (at the serogroup IV level) from Agdia (https://orders.agdia.com/agdia-coating-antibodywsmvgbnv-wsmv-cab-61500).

Note: This ELISA kit detects both *Watermelon silver mottle virus* (WSMoV) (not known to occur in the United States) and *Groundnut bud necrosis virus* (GBNV) at the same time. The ELISA kit is specific to test WSMoV, GBNV and other potential serogroup IV of orthotospoviruses. In addition, it gives no cross-reaction
with other orthotospoviruses known to occur in the United States such as Impatiens necrotic spot virus (INSV), Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV), Tomato chlorotic spot virus (TCSV), or Iris yellow spot virus (IYSV).

It is possible that the specific ELISA kit for WSMoV and GBNV will cross-react with Capsicum chlorosis virus (CaCV) and Watermelon bud necrosis virus (WBNV). Although this specific ELISA kit could possibly react with CaCV and WBNV, in addition to the desired GBNV, these viruses (CaCV and WBNV) are not present in the United States. Hence, the cross-reactions with close-related orthotospoviruses in the same serogroup (IV) during the survey are not a major concern.

Confirmation, however, requires a combination of molecular techniques.

Optional: Agdia has specific ELISA or ImmunoStrip methods for other orthotospoviruses in other serogroups such as Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), Groundnut ringspot virus (GRSV), Tomato chlorotic spot virus (TCSV), and Tomato spotted wilt virus (TSWV). The serological assays for INSV, IYSV, GRSV, TCSV, and TSWV could be helpful to identify the causal agent of similar diseases on the same host plant. In addition, Agdia provides a Tospovirus group-specific PCR, which may be helpful to confirm that the causal agent of the disease belongs to tospovirus group.

*For the most up-to-date methods for survey and identification, see Approved Methods on the CAPS Resource and Collaboration Site, at http://caps.ceris.purdue.edu/.

Literature-Based Methods:
There are numerous publications which describe serological/ molecular diagnostic methods for GBNV.

The following are some examples:

Jain et al. (2005) created a high titre polyclonal antiserum to the nucleocapsid protein of GBNV that can successfully detect GBNV infection via a DAC-ELISA in a wide range of hosts, including cowpea, mung bean, soybean, tomato, and urd bean. However, this assay could not distinguish among the different orthotospoviruses in serogroup IV, such as Watermelon bud necrosis virus (WBNV) and Capsicum chlorosis virus (CaCV). Since GBNV and WBNV have some common solanaceous hosts (including tomato and pepper), mixed infection of these two viruses is possible (Jain, personal communication, 2016).

Akram et al. (2004) identified GBNV using an RT-PCR. The primers were developed based on the sequence of the movement protein (NSm) of the virus. Pundhir et al., (2012) developed an RT-PCR using primers targeting the nucleocapsid protein of GBNV. Kaushal et al. (2010) developed a print capture RT-PCR (PC-RT-PCR) which diagnosed GBNV infection in potato and in thrips insect vector tissue.
Maheshwari et al. (2015) developed a single chain variable fragment (scFv) for specific diagnosis of GBNV. This scFv was able to detect GBNV via DAC-ELISA and immunocapture RT-PCR (IC-RT-PCR). The IC-RT-PCR was able to distinguish GBNV from the closely related (WBNV).

Easily Confused Species

There are several other orthotospovirus species which infect the same hosts as GBNV, and at least two are present in the United States. For example, *Groundnut ringspot virus* (GRSV) and *Tomato spotted wilt virus* (TSWV) cause similar symptoms in tomato, are present in the United States, and are also vectored by *Frankliniella occidentalis* and *F. schultzei* (Webster et al., 2010; Reitz et al., 2011).

Other orthotospovirus species which infect solanaceous hosts and are also vectored by thrips include: *Capsicum chlorosis virus* (CaCV), *Groundnut yellow spot virus* (GYSV), *Peanut chlorotic fan-spot virus* (PCFV), *Tomato chlorotic spot virus* (TCSV), *Tomato yellow ring virus* (TYRV), and *Watermelon bud necrosis virus* (WBNV) (Reitz et al., 2011; Jain, personal communication, 2016). Molecular identification is necessary for confirmation of GBNV.

References

AQAS. 2017. Agricultural Quarantine Activity Systems. Queried July 18, 2017 from,

ICTV. 2016. ICTV Taxonomy History: Create a new order, Bunyavirales, to accommodate nine families (eight new, one renamed) comprising thirteen genera. International Committee on Taxonomy of Viruses (ICTV).

This datasheet was developed by USDA-APHIS-PPQ-CPHST staff. Cite this document as:

Reviewers:

Dr. B. V. Bhaskara Reddy, ANG Ranga Agril University, Tirupati, India
Dr. Rakesh Jain, Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. Vessela Mavrodieva, USDA-APHIS-PPQ-CPHST, Beltsville, MD

Update History:

- May 2016: Draft version written
- July 2016: Datasheet sent out for subject matter expert review.
- August 2016: Datasheet posted to CAPS Resource and Collaboration site.
Appendix A:

Peanuts Harvested Acres For Sale (2012)

Data Source:
USDA (Select Data) - All Data

Date Released:
May 16, 2018

Map Description:
This map shows the harvested acres of peanuts for sale in 2012 across the United States. The map uses different colors to indicate the range of acreages reported, with a legend explaining the key.

Legend:
- **1 - 499:** Light green
- **500 - 1,999:** Yellow
- **2,000 - 3,999:** Orange
- **4,000 - 7,999:** Red
- **8,000 - 14,999:** Dark red
- **15,000 - 24,999:** Black
- **25,000 - 49,999:** Green
- **50,000 - 99,999:** Light green
- **100,000 - 500,000:** Green
- **501,000 - 1,000,000:** Orange
- **1,001,000 - 2,499,999:** Red
- **2,500,000 - 5,000,000:** Dark red
- **5,000,000 - 12,499,999:** Black
- **12,500,000 - 39,999,999:** Green
- **40,000,000 - 100,000,000:** Orange
- **100,000,000 - 199,999,999:** Red
- **200,000,000 - 499,999,999:** Dark red
- **500,000,000 - 999,000,000:** Black
- **1,000,000,000 - 2,499,999,999:** Green
- **2,500,000,000 - 5,000,000,000:** Orange
- **5,000,000,000 - 10,000,000,000:** Red
- **10,000,000,000 - 24,999,999,999:** Dark red
- **25,000,000,000 - Unlimited:** Black

Disclaimer:
Data may be underestimated or misrepresented. Users are advised to consult the original data sources for the most accurate information.

Map Credits:
USDA - National Agricultural Statistics Service

Potatoes Harvested Acres For Sale (2012)

Data Source:
USDA (Select Data) - All Data

Date Released:
May 16, 2018

Map Description:
This map shows the harvested acres of potatoes for sale in 2012 across the United States. The map uses different colors to indicate the range of acreages reported, with a legend explaining the key.

Legend:
- **1 - 1,495:** Light green
- **1,500 - 5,999:** Yellow
- **6,000 - 12,999:** Orange
- **13,000 - 24,999:** Red
- **25,000 - 77,999:** Dark red
- **78,000 - Unlimited:** Black

Disclaimer:
Data may be underestimated or misrepresented. Users are advised to consult the original data sources for the most accurate information.

Map Credits:
USDA - National Agricultural Statistics Service

Appendix B:

Figure 7. *Vigna* spp. infected with GBNV. Courtesy of Mohd Akram, Indian Institute of Pulses Research.

Figure 8. *Pisum sativum* (pea) infected with GBNV. Courtesy of Mohd Akram.